Scipy laplace scaling - scipy

I want to check the calculation of the laplace filter from scipy.ndimage and compare it to my own method if differentiation. Below I have a piece of code that I ran
import scipy.ndimage.filters
n = 100
x_range = y_range = np.linspace(-1, 1, n)
X, Y = np.meshgrid(x_range, y_range)
f_fun = X ** 2 + Y ** 2
f_fun_laplace = 4 * np.ones(f_fun.shape)
res_laplace = scipy.ndimage.filters.laplace(f_fun, mode='constant')
I expect that the variable res_laplace will have the constant value of 4 over the whole domain (excluding the boundaries for simplicity), since this is what I would get by applying the laplace operator to my function f(x,y) = x^2 + y^2.
However, the value that res_laplace produces is 0.00163 in this case. So my question was.. why is this not equal to 4?

The answer, in this specific case, is that you need to multiply the output of scipy.ndimage.filters.laplace with a factor of (1/delta_x) ** 2. Where delta_x = np.diff(x_range)[0]
I simply assumed that the filter would take care of that, but in hindsight it is of course not able know the value delta_x.
And since we are differentiating twice, we need to square the inverse of this delta_x.

Related

Is there a way to use scipy.interpolate to do 1d spline interpolation with boundary conditions specified away from data?

There are lots of ways of assembling splines directly from data while specifying derivatives at the boundary but I do not see an easy way to specify derivative constraints away from the data. For example
np.random.seed(0)
M = 30
x = np.random.rand(M)
x.sort()
y = np.random.rand(M) + (10 * x) ** 2
xx = np.linspace(x.min(), x.max(), 100) # for plotting
import scipy.interpolate as si
f = si.make_interp_spline(x, y) # ok but how to add derivative conditions away from the x-values?
x_derivs = [-1, 2]
order_derivs = [2, 1]
value_derivs = [0, 1]
More generally, is there a built in method to do this or take derivative constraints separate from value constraints?
I think it's just a matter of creating the operator matrix to solve the linear problem.
Short answer : it's not implemented at the moment.
You can of course modify the scipy source, the relevant part is
https://github.com/scipy/scipy/blob/v1.7.0/scipy/interpolate/_bsplines.py#L1105

MATLAB Plotting Inner Matrix elements must agree

So I'm just trying to plot 4 different subplots with variations of the increments. So first would be dx=5, then dx=1, dx=0.1 and dx=0.01 from 0<=x<=20.
I tried to this:
%for dx = 5
x = 0:5:20;
fx = 2*pi*x *sin(x^2)
plot(x,fx)
however I get the error inner matrix elements must agree. Then I tried to do this,
x = 0:5:20
fx = (2*pi).*x.*sin(x.^2)
plot(x,fx)
I get a figure, but I'm not entirely sure if this would be the same as what I am trying to do initially. Is this correct?
The initial error arose since two vectors with the same shape cannot be squared (x^2) nor multiplied (x * sin(x^2)). The addition of the . before the * and ^ operators is correct here since that will perform the operation on the individual elements of the vectors. So yes, this is correct.
Also, bit of a more advanced feature, you can use an anonymous function to aid in the expressions:
fx = #(x) 2*pi.*x.*sin(x.^2); % function of x
x = 0:5:20;
plot(x,fx(x));
hold('on');
x = 0:1:20;
plot(x,fx(x));
hold('off');

Integration via trapezoidal sums in MATLAB

I need help finding an integral of a function using trapezoidal sums.
The program should take successive trapezoidal sums with n = 1, 2, 3, ...
subintervals until there are two neighouring values of n that differ by less than a given tolerance. I want at least one FOR loop within a WHILE loop and I don't want to use the trapz function. The program takes four inputs:
f: A function handle for a function of x.
a: A real number.
b: A real number larger than a.
tolerance: A real number that is positive and very small
The problem I have is trying to implement the formula for trapezoidal sums which is
Δx/2[y0 + 2y1 + 2y2 + … + 2yn-1 + yn]
Here is my code, and the area I'm stuck in is the "sum" part within the FOR loop. I'm trying to sum up 2y2 + 2y3....2yn-1 since I already accounted for 2y1. I get an answer, but it isn't as accurate as it should be. For example, I get 6.071717974723753 instead of 6.101605982576467.
Thanks for any help!
function t=trapintegral(f,a,b,tol)
format compact; format long;
syms x;
oldtrap = ((b-a)/2)*(f(a)+f(b));
n = 2;
h = (b-a)/n;
newtrap = (h/2)*(f(a)+(2*f(a+h))+f(b));
while (abs(newtrap-oldtrap)>=tol)
oldtrap = newtrap;
for i=[3:n]
dx = (b-a)/n;
trapezoidsum = (dx/2)*(f(x) + (2*sum(f(a+(3:n-1))))+f(b));
newtrap = trapezoidsum;
end
end
t = newtrap;
end
The reason why this code isn't working is because there are two slight errors in your summation for the trapezoidal rule. What I am precisely referring to is this statement:
trapezoidsum = (dx/2)*(f(x) + (2*sum(f(a+(3:n-1))))+f(b));
Recall the equation for the trapezoidal integration rule:
Source: Wikipedia
For the first error, f(x) should be f(a) as you are including the starting point, and shouldn't be left as symbolic. In fact, you should simply get rid of the syms x statement as it is not useful in your script. a corresponds to x1 by consulting the above equation.
The next error is the second term. You actually need to multiply your index values (3:n-1) by dx. Also, this should actually go from (1:n-1) and I'll explain later. The equation above goes from 2 to N, but for our purposes, we are going to go from 1 to N-1 as you have your code set up like that.
Remember, in the trapezoidal rule, you are subdividing the finite interval into n pieces. The ith piece is defined as:
x_i = a + dx*i; ,
where i goes from 1 up to N-1. Note that this starts at 1 and not 3. The reason why is because the first piece is already taken into account by f(a), and we only count up to N-1 as piece N is accounted by f(b). For the equation, this goes from 2 to N and by modifying the code this way, this is precisely what we are doing in the end.
Therefore, your statement actually needs to be:
trapezoidsum = (dx/2)*(f(a) + (2*sum(f(a+dx*(1:n-1))))+f(b));
Try this and let me know if you get the right answer. FWIW, MATLAB already implements trapezoidal integration by doing trapz as #ADonda already pointed out. However, you need to properly structure what your x and y values are before you set this up. In other words, you would need to set up your dx before hand, then calculate your x points using the x_i equation that I specified above, then use these to generate your y values. You then use trapz to calculate the area. In other words:
dx = (b-a) / n;
x = a + dx*(0:n);
y = f(x);
trapezoidsum = trapz(x,y);
You can use the above code as a reference to see if you are implementing the trapezoidal rule correctly. Your implementation and using the above code should generate the same results. All you have to do is change the value of n, then run this code to generate the approximation of the area for different subdivisions underneath your curve.
Edit - August 17th, 2014
I figured out why your code isn't working. Here are the reasons why:
The for loop is unnecessary. Take a look at the for loop iteration. You have a loop going from i = [3:n] yet you don't reference the i variable at all in your loop. As such, you don't need this at all.
You are not computing successive intervals properly. What you need to do is when you compute the trapezoidal sum for the nth subinterval, you then increment this value of n, then compute the trapezoidal rule again. This value is not being incremented properly in your while loop, which is why your area is never improving.
You need to save the previous area inside the while loop, then when you compute the next area, that's when you determine whether or not the difference between the areas is less than the tolerance. We can also get rid of that code at the beginning that tries and compute the area for n = 2. That's not needed, as we can place this inside your while loop. As such, this is what your code should look like:
function t=trapintegral(f,a,b,tol)
format long; %// Got rid of format compact. Useless
%// n starts at 2 - Also removed syms x - Useless statement
n = 2;
newtrap = ((b-a)/2)*(f(a) + f(b)); %// Initialize
oldtrap = 0; %// Initialize to 0
while (abs(newtrap-oldtrap)>=tol)
oldtrap = newtrap; %//Save the old area from the previous iteration
dx = (b-a)/n; %//Compute width
%//Determine sum
trapezoidsum = (dx/2)*(f(a) + (2*sum(f(a+dx*(1:n-1))))+f(b));
newtrap = trapezoidsum; % //This is the new sum
n = n + 1; % //Go to the next value of n
end
t = newtrap;
end
By running your code, this is what I get:
trapezoidsum = trapintegral(#(x) (x+x.^2).^(1/3),1,4,0.00001)
trapezoidsum =
6.111776299189033
Caveat
Look at the way I defined your function. You must use element-by-element operations as the sum command inside the loop will be vectorized. Take a look at the ^ operations specifically. You need to prepend a dot to the operations. Once you do this, I get the right answer.
Edit #2 - August 18th, 2014
You said you want at least one for loop. This is highly inefficient, and whoever specified having one for loop in the code really doesn't know how MATLAB works. Nevertheless, you can use the for loop to accumulate the sum term. As such:
function t=trapintegral(f,a,b,tol)
format long; %// Got rid of format compact. Useless
%// n starts at 3 - Also removed syms x - Useless statement
n = 3;
%// Compute for n = 2 first, then proceed if we don't get a better
%// difference tolerance
newtrap = ((b-a)/2)*(f(a) + f(b)); %// Initialize
oldtrap = 0; %// Initialize to 0
while (abs(newtrap-oldtrap)>=tol)
oldtrap = newtrap; %//Save the old area from the previous iteration
dx = (b-a)/n; %//Compute width
%//Determine sum
%// Initialize
trapezoidsum = (dx/2)*(f(a) + f(b));
%// Accumulate sum terms
%// Note that we multiply each term by (dx/2), but because of the
%// factor of 2 for each of these terms, these cancel and we thus have dx
for n2 = 1 : n-1
trapezoidsum = trapezoidsum + dx*f(a + dx*n2);
end
newtrap = trapezoidsum; % //This is the new sum
n = n + 1; % //Go to the next value of n
end
t = newtrap;
end
Good luck!

Basic MATLAB - how to "create" a variant

I need to implement Lagrange iterpolation in MATLAB.
I (think I've) understood how it works. I don't get how to implement the x.
lets say I want to calculate for these point: (0,1) (1,1) (2,4)
So I need to do these:
l_0(x) = (x-1)(x-2)/(0-1)(0-2)
l_1(x) = (x-0)(x-2)/(1-0)(1-2)
l_2(x) = (x-0)(x-1)/(2-0)(2-1)
and so on...
So I want to do a MATLAB function that will receive the (x,y) points, and retrieves the coefficients of the resulting Polynomial.
In this case: ( 3/2, 3/2, 1 )
I DON'T WANT A CODE FOR AN ANSWER - just how to implement the above x variant.
Thanks
I'm not sure if this is what you need, but I think that what you are looking for is MATLAB anonymous functions
In your case, you would write
l_0 = #(x) (x-1)(x-2)/(0-1)(0-2)
l_1 = #(x) (x-0)(x-2)/(1-0)(1-2)
l_2 = #(x) (x-0)(x-1)/(2-0)(2-1)
Then you can use your Lagrange polynomials like regular functions:
val = y0 * l_0(x0) + y1 * l_1(x1) + y2 * l_2(x2)
Is that what you were looking for?
Well if you don't want code, then x is simply any value within the range of the input values of your x points. In your case, any value between 0 and 2.

Get function handle of fit function in matlab and assign fit parameters

I'm fitting custom functions to my data.
After obtaining the fit I would like to get something like a function handle of my fit function including the parameters set to the ones found by the fit.
I know I can get the model with
formula(fit)
and I can get the parameters with
coeffvalues(fit)
but is there any easy way to combine the two in one step?
This little loop will do the trick:
x = (1:100).'; %'
y = 1*x.^5 + 2*x.^4 + 3*x.^3 + 4*x.^2 + 5*x + 6;
fitobject = fit(x,y,'poly5');
cvalues = coeffvalues(fitobject);
cnames = coeffnames(fitobject);
output = formula(fitobject);
for ii=1:1:numel(cvalues)
cname = cnames{ii};
cvalue = num2str(cvalues(ii));
output = strrep(output, cname , cvalue);
end
output = 1*x^5 + 2*x^4 + 3*x^3 + 4*x^2 + 5*x + 6
The loop needs to be adapted to the number of coefficients of your fit.
Edit: two slight changes in order to fully answer the question.
fhandle = #(x) eval(output)
returns a function handle. Secondly output as given by your procedure doesn't work, as the power operation reads .^ instead of x, which can obviously be replaced by
strrep(output, '^', '.^');
You can use the Matlab curve fitting function, polyfit.
p = polyfit(x,y,n)
So, p contains the coefficients of the polynomial, x and y are the coordinates of the function you're trying to fit. n is the order of the polynomial. For example, n=1 is linear, n=2 is quadratic, etc. For more info, see this documentation centre link. The only issue is that you may not want a polynomial fit, in which case you'll have to use different method.
Oh, and you can use the calculated coefficients p to to re-evaluate the polynomial with:
f = polyval(p,x);
Here, f is the value of the polynomial with coefficients p evaluated at points x.