I'm trying to write a function that creates registers an item with the factory then does some basic operations to that item. The problem I'm having is that when I try to execute this code, I get a null item error.
An example excerpt of the code I'd like to have would be:
modified_sequence_item example_msg_item
function new (string name = ex_sequence);
super.new(name);
create_message(example_msg_item, "example_msg_item", 32'hDEADBEEF);
endfunction
function create_message(modified_sequence_item msg_item, string msg_name, bit[31:0] data);
msg_item = modified_sequence_item::type_id::create(msg_name);
msg_item.data_field = data;
endfunction
Unfortunately, this doesn't work. I get the following error:
UVM_FATAL # 5710: reporter [NullITM] attempting to start a null item from sequence 'main'
However, the following code does work:
modified_sequence_item example_msg_item
function new (string name = ex_sequence);
super.new(name);
example_msg_item = modified_sequence_item::type_id_create("example_msg_item");
example_msg_item.data_field = 32'hDEADBEEF;
endfunction
Looking at these two bits of code, to me they are nearly identical aside from the actions being nested inside a function in the first bit of code. This leads me to believe the issue is most likely an issue with passing data being the functions.
Does anyone have any recommendations on how I could modify the first code example so that it does not have a null item error?
Two problems with your function declaration:
The handle that you are creating inside your function needs to be copied out when exiting the function, so msg_item needs to be declared as an output argument.
You forgot to declare the return type as void. Otherwise the default is a 1-bit 4-state result (IEEE Std 1800-2017, section 13.4 Functions: implicit_data_type)
function void create_message(
output modified_sequence_item msg_item,
input string msg_name, bit[31:0] data);
msg_item = modified_sequence_item::type_id::create(msg_name);
msg_item.data_field = data;
endfunction
Related
I met a problem when I trying to modify a queue of class in systemverilog function.
Here are the codes:
module my_module;
class dscr;
logic mode;
function void print_dscr;
$display("mode = %d", this.mode);
endfunction
endclass
dscr a_dscr_q[$];
dscr b_dscr_q[$];
initial begin
descriptor_decode(0, a_dscr_q);
for (int I=0; I<a_dscr_q.size(); i++)
a_dscr_q[i].print_dscr();
descriptor_decode(1, b_dscr_q);
for (int I=0; I<a_dscr_q.size(); i++)
a_dscr_q[i].print_dscr();
for (int I=0; I<b_dscr_q.size(); i++)
b_dscr_q[i].print_dscr();
end
function void descriptor_decode(logic mode, ref dscr dscr_q[$]);
dscr dscr_dec = new;
dscr_dec.mode = mode;
dscr_q.pushback(dscr_dec);
endfunction
endmodule
I am trying to create different class queue in function "descriptor_decoder", with different value of input mode. In function, I firstly create a new dscr class and then push it to a class queue. However the simulation result are:
mode = 0
mode = 1
mode = 1
The first time I call the function, it did push back the correct class into a_dscr_q. But the second function call, it seems the class is push back into both a_dscr_q and b_dscr_q. I am quite confused, What happened in here?
Your code was made illegal syntax in the IEEE 1800-2009 LRM because of the very problem you are experiencing. Most tools now report this as an error.
Your descriptor_decode is function with a static lifetime, and the dscr_dec variable declared inside it has a static lifetime as well.
You are not allowed to have an initialization on a variable whose lifetime is implicitly static and has the option to be declared automatic. This is because unlike most programming languages, the default lifetime of variables in a SystemVerilog function is static, and initialization of static variables happens once before time 0, not each occurrence of calling the function. In your example, you are expecting dscr_dec to behave as an automatic.
So you need to make one of the following code changes:
explicitly declare dscr_dec automatic
declare the function automatic, which makes variables declared inside it implicitly automatic
declare the module automatic, which makes functions declared inside it implicitly automatic
split the declaration and initialization do that the initialization happens when the function gets called.
Blazing ahead with newfound knowledge of SystemVerilog's inner workings I've set out to use one of these fandangled pass-by-reference features to update a classes' counter in the constructor of another class. The setup (stripped to the basics) looks somewhat like this:
class my_queue;
int unsigned num_items; //Want to track the number of items this Queue has seen.
function push_new_item();
item new_item = new(num_items);
endfunction
endclass
class parent_item;
int unsigned x_th_item;
function new(ref int unsigned num_items);
x_th_item = num_items;
num_items += 1; //This should increase the counter in num_items.
endfunction
endclass
class item extends parent_item;
function new(ref int unsigned num_items);
super.new(num_items);
endfunction
endclass
The issue is that my compiler is complaining about an
Illegal connection to the ref port 'num_items' of function/task parent_item::new, formal argument should have same type as actual argument.
I have an idea on how to fix this: Moving the increment after the call to new() in push_new_items.
But then I still won't know how to correctly use pass-by-refrence in SV so what's causing the error?
Is it the other pass-by-reference or maybe a syntactical error?
You do not need ref semantics for this, use an inout argument.
inout's are copied-in upon entry and copied-out upon return of a task or function. The type compatibility requirements are much stricter as you have seen for ref arguments.
The only occasion you must use a ref argument isin time consuming tasks and you need to see active updates to the arguments before the task returns.
task my_task(ref bit tclock);
#(posedge tclock) // this would hang if tclock was an input
endtask
Another place you might want to use a ref argument is as an optimization when the argument type is a large object like an array. But passing a single int by reference is actually slower than copying its value directly.
Qiu did point me to the issue with my code. My problem was that, whilst the variables were declared correctly on both ends, one of my constructors was written:
function new(ref int num_items);
where it should have rather been
function new(ref int unsigned num_items);
Thank you Qiu.
I have in my database a set of records that concentrates information about my .W's, e.g. window name, parent directory, file name, procedure type (for internal treatments purposes), used to build my main menu. With this data I'm developing a new start procedure for the ERP that I maintain and using the opportunity in order to rewrite some really outdated functions and programs and implement new functionalities. Until now, I hadn't any problems but when I started to develop the .P procedure which will check the database register of a program that was called from the menu of this new start procedure - to check if it needs to receive fixed parameters to be run and its data types - I found a problem that I can't figure out a solution.
In this table, I have stored in one of the fields the parameters needed by the program, each with his correspondent data type. The problem is on how to pass different data types to procedures based only on the stored data. I tried to pre-convert data using a CASE clause and an include to check the parameter field for correct parameter sending but the include doesn't work as I've expected.
My database field is stored as this:
Description | DATATYPE | Content
I've declared some variables and converted properly the stored data into their correct datatype vars.
DEF VAR c-param-exec AS CHAR NO-UNDO EXTENT 9 INIT ?.
DEF VAR i-param-exec AS INT NO-UNDO EXTENT 9 INIT ?.
DEF VAR de-param-exec AS DEC NO-UNDO EXTENT 9 INIT ?.
DEF VAR da-param-exec AS DATE NO-UNDO EXTENT 9 INIT ?.
DEF VAR l-param-exec AS LOG NO-UNDO EXTENT 9 INIT ?.
DEF VAR i-count AS INT NO-UNDO.
blk-count:
DO i-count = 0 TO 8:
IF TRIM(programa.parametro[i-count]) = '' THEN
LEAVE blk-count.
i-count = i-count + 1.
CASE ENTRY(2,programa.parametro[i-count],CHR(1)):
WHEN 'CHARACTER' THEN
c-param-exec[i-count] = ENTRY(3,programa.parametro[i-count],CHR(1)).
WHEN 'INTEGER' THEN
i-param-exec[i-count] = INT(ENTRY(3,programa.parametro[i-count],CHR(1))).
WHEN 'DECIMAL' THEN
de-param-exec[i-count] = DEC(ENTRY(3,programa.parametro[i-count],CHR(1))).
WHEN 'DATE' THEN
da-param-exec[i-count] = DATE(ENTRY(3,programa.parametro[i-count],CHR(1))).
WHEN 'LOGICAL' THEN
l-param-exec[i-count] = (ENTRY(3,programa.parametro[i-count],CHR(1)) = 'yes').
OTHERWISE
c-param-exec[i-count] = ENTRY(3,programa.parametro[i-count],CHR(1)).
END CASE.
END.
Then I tried to run the program using an include to pass parameters (in this example, the program have 3 INPUT parameters).
RUN VALUE(c-prog-exec) ({util\abrePrograma.i 1},
{util\abrePrograma.i 2},
{util\abrePrograma.i 3}).
Here is my abrePrograma.i
/* abrePrograma.i */
(IF ENTRY(2,programa.parametro[{1}],CHR(1)) = 'CHARACTER' THEN c-param-exec[{1}] ELSE
IF ENTRY(2,programa.parametro[{1}],CHR(1)) = 'INTEGER' THEN i-param-exec[{1}] ELSE
IF ENTRY(2,programa.parametro[{1}],CHR(1)) = 'DECIMAL' THEN de-param-exec[{1}] ELSE
IF ENTRY(2,programa.parametro[{1}],CHR(1)) = 'DATE' THEN da-param-exec[{1}] ELSE
IF ENTRY(2,programa.parametro[{1}],CHR(1)) = 'LOGICAL' THEN l-param-exec[{1}] ELSE
c-param-exec[{1}])
If I suppress the 2nd, 3rd, 4th and 5th IF's from the include or use only one data type in all IF's (e.g. only CHAR, only DATE, etc.) the program works properly and executes like a charm but I need to call some old programs, which expects different datatypes in its INPUT parameters and using the programs as described OpenEdge doesn't compile the caller, triggering the error number 223.
---------------------------
Erro (Press HELP to view stack trace)
---------------------------
** Tipos de dados imcompativeis em expressao ou atribuicao. (223)
** Nao entendi a linha 86. (196)
---------------------------
OK Ajuda
---------------------------
Can anyone help me with this ?
Thanks in advance.
Looks as if you're trying to use variable parameter definitions.
Have a look at the "create call" statement in the ABL reference.
http://documentation.progress.com/output/ua/OpenEdge_latest/index.html#page/dvref/call-object-handle.html#wwconnect_header
Sample from the documentation
DEFINE VARIABLE hCall AS HANDLE NO-UNDO.
CREATE CALL hCall.
/* Invoke hello.p non-persistently */
hCall:CALL-NAME = "hello.p".
/* Sets CALL-TYPE to the default */
hCall:CALL-TYPE = PROCEDURE-CALL-TYPE
hCall:NUM-PARAMETERS = 1.
hCall:SET-PARAMETER(1, "CHARACTER", "INPUT", "HELLO WORLD").
hCall:INVOKE.
/* Clean up */
DELETE OBJECT hCall.
The best way to get to the bottom of those kind of preprocessor related issues is to do a compile with preprocess listing followed by a syntax check on the preprocessed file. Once you know where the error is in the resulting preprocessed file you have to find out which include / define caused the code that won't compile .
In procedure editor
compile source.w preprocess source.pp.
Open source.pp in the procedure editor and do syntax check
look at original source to find include or preprocessor construct that resulted in the code that does not compile.
Okay, I am getting a little bit lost (often happens to me with lots of preprocessors) but am I missing that on the way in and out of the database fields you are storing values as characters, right? So when storing a parameter in the database you have to convert it to Char and on the way out of the database you have convert it back to its correct data-type. To not do it one way or the other would cause a type mismatch.
Also, just thinking out loud (without thinking it all the way through) wonder if using OOABL (Object Oriented ABL) depending on if you Release has it available wouldn't make it easier by defining signatures for the different datatypes and then depending on which type of input or output parameter you call it with, it will use the correct signature and correct conversion method.
Something like:
METHOD PUBLIC VOID storeParam(input cParam as char ):
dbfield = cParam.
RETURN.
END METHOD.
METHOD PUBLIC VOID storeParam(input iParam as int ):
dbfield = string(iParam).
RETURN.
END METHOD.
METHOD PUBLIC VOID storeParam(input dParam as date ):
dbfield = string(dParam).
RETURN.
END METHOD.
just a thought.
i want to embed a function written in python into c++ code.
My python code is:test.py
def func(x=None, y=None, z=None):
print x,y,z
My c++ code is:
module = import("test");
namespace = module.attr("__dict__");
//then i want to know how to pass value 'y' only.
module.attr("func")("y=1") // is that right?
I'm not sure Boost.Python implements the ** dereference operator as claimed, but you can still use the Python C-API to execute the method you are intested on, as described here.
Here is a prototype of the solution:
//I'm starting from where you should change
boost::python::object callable = module.attr("func");
//Build your keyword argument dictionary using boost.python
boost::python::dict kw;
kw["x"] = 1;
kw["y"] = 3.14;
kw["z"] = "hello, world!";
//Note: This will return a **new** reference
PyObject* c_retval = PyObject_Call(callable.ptr(), NULL, kw.ptr());
//Converts a new (C) reference to a formal boost::python::object
boost::python::object retval(boost::python::handle<>(c_retval));
After you have converted the return value from PyObject_Call to a formal boost::python::object, you can either return it from your function or you can just forget it and the new reference returned by PyObject_Call will be auto-deleted.
For more information about wrapping PyObject* as boost::python::object, have a look at the Boost.Python tutorial. More precisely, at this link, end of the page.
a theoretical answer (no time to try myself :-| ):
boost::python::dict kw;
kw["y"]=1;
module.attr("func")(**kw);
I'm working on finishing up my server for my first iPhone application, and I want to implement a simple little feature.
I would like to run a function (perhaps method as well), if another function returns a certain value after a certain waiting period. Fairly simple concept.... right?
Here's my basic foundation.
template <typename T,class TYP>
struct funcpar{
T (*function)(TYP);
TYP parameter;
funcpar(T (*func)(TYP),TYP param);
funcpar& operator=(const funcpar& fp);
};
The goal here is to be able to call funcpar::function(funcpar::parameter) to run the stored function and parameter, and not have to worry about anything else...
When I attempted to use a void* parameter instead of the template, I couldn't copy the memory as an object (because I didn't know what the end object was going to be, or the beginning for that matter) and when I tried multiple timers, every single object's parameter would change to the new parameter passed to the new timer... With the previous struct I have a
question:
Is it possible to make an all-inclusive pointer to this type of object inside a method of a class? Can I templatize a method, and not the whole class? Would it work exactly like a function template?
I have a managing class that holds a vector of these "jobs" and takes care of everything fairly well. I just don't know how to use a templatized function with the struct, or how to utilize templates on a single method in a class..
I'm also utilizing this in my custom simple threadpool, and that's working fairly well, and has the same problems...
I have another question:
Can I possibly store a function with a parameter before it's run? Something like toRun = dontrunmeyet(withThisParameter);? Is my struct even necessary?
Am I going about this whole thing incorrectly?
If this is overly ambiguous, I can set you up with my whole code for context
In order to create a class method that takes a template parameter, yes, it would work almost exactly like a function template. For example:
class A
{
public:
template<typename T>
void my_function(const T& value) { }
};
int main()
{
A test;
test.my_function(5);
return 0;
}
Secondly, for your structure, you can actually turn that into a functor-object that by overloading operator(), lets you call the structure as-if it were a function rather than having to actually call the specific function pointer members inside the structure. For instance, your structure could be re-written to look like this:
#include <iostream>
template <class ReturnType, class ParameterType>
class funcpar
{
private:
ReturnType (*function)(ParameterType);
ParameterType parameter;
public:
funcpar(ReturnType (*func)(ParameterType),ParameterType param):
function(func), parameter(param) {}
funcpar& operator=(const funcpar& fp);
//operator() overloaded to be a function that takes no arguments
//and returns type ReturnType
ReturnType operator() ()
{
return function(parameter);
}
};
int sample_func(int value)
{
return value + 1;
}
int main()
{
funcpar<int, int> test_functor(sample_func, 5);
//you can call any instance of funcpar just like a normal function
std::cout << test_functor() << std::endl;
return 0;
}
BTW, you do need the functor object (or your structure, etc.) in order to bind a dynamic parameter to a function before the function is called in C/C++ ... you can't "store" a parameter with an actual function. Binding a parameter to a function is actually called a closure, and in C/C++, creating a closure requires a structure/class or some type of associated data-structure you can use to bind a function with a specific parameter stored in memory that is used only for a specific instance of that function call.