How to test whether the ODE integration has reached equilibrium? - matlab

I am using Matlab for this project. I have introduced some modifications to the ode45 solver.
I am using sometimes up to 64 components, all in the [0,1] interval and the components sum up to 1.
At some intervals I halt the integration process in order to run a quick check to see whether further integration is needed and I am looking for some clever way to efficiently figure this one.
I have found four cases and I should be able to detect each of them during a check:
1: The system has settled into an equilibrium and all components are unchanged.
2: Three or more components are wildly fluctuating in a periodic manner.
3: One or two components are changing very rapidly with low amplitude and short frequency.
4: None of the above is true and the integration must be continued.
To give an idea: I have found it to be a good practice to use the last ~5k states generated by the ode45 solver to a function for this purpose.
In short: how does one detect equilibrium or a nonchanging periodic pattern during ODE integration?

Steady-state only occurs when the time derivatives your model function computes are all 0. A periodic solution like you described corresponds rather to a limit cycle, i.e. oscillations around an unstable equilibrium. I don't know if there are methods to detect these cycles. I might update my answers to give more info on that. Maybe an idea would be to see if the last part of the signal correlates with itself (with a delay corresponding to the cycle period).
Note that if you are only interested in the steady state, an implicit method like ode15s may be more efficient, as it can "dissipate" all the transient fluctuations and use much larger time steps than explicit methods, which must resolve the transient accurately to avoid exploding. However, they may also dissipate small-amplitude limit cycles. A pragmatic solution is then to slightly perturb the steady-state values and see if an explicit integration converges towards the unperturbed steady-state.
Something I often do is to look at the norm of the difference between the solution at each step and the solution at the last step. If this difference is small for a sufficiently high number of steps, then steady-state is reached. You can also observe how the norm $||frac{dy}{dt}||$ converges to zero.
This question is actually better suited for the computational science forum I think.

Related

What does Default Solver Iteration Means?

I'm trying to understand Unity Physics engine (PhysX), Can somebody explain that what exactly Default Solver Iterations and Default Solver Velocity Iterations are?
This is from Unity documentation :
Default Solver Iterations: Define how many solver processes Unity runs
on every physics frame. Solvers are small physics engine tasks which
determine a number of physics interactions, such as the movements of
joints or managing contact between overlapping Rigidbody components.
This affects the quality of the solver output and it’s advisable to
change the property in case non-default Time.fixedDeltaTime is used,
or the configuration is extra demanding. Typically, it’s used to
reduce the jitter resulting from joints or contacts.
Please provide some example of how it works and how does increase or decreasing it affects the final result?
I asked this question on Unity Forum and Hyblademin answered it:
In mathematics, an iterative solution method is any algorithm which
approximately solves a system of unknown values like [x1, x2, x3 ...
xn] by repeating a set of steps (iterating). Often, the system of
interest is a set of linear equations exactly like those seen in
algebra class but with a prohibitively high number of unknowns.
Starting with a guess for the solution to each unknown, which could be
based on a similar, known system or could be from a common starting
point like [1, 1, 1 ... 1], a procedure is carried out which gives an
approximate solution which will be closer to the exact values. After
only one iteration, the approximation won't be a very good one unless
the initial guess was already close. But the procedure can be repeated
with the first approximation as the new input, which will give a
closer approximation.
After repeating a few more times, we can expect a reliable
approximation. It still isn't exact, which we could confirm by just
plugging in our answers into our original system and seeing that it
isn't quite right (after simplifying, we would end up with things like
10=10.001 or something to that effect). That said, if the
approximation is close enough for our application, we stop iterating
and use it.
These lecture notes courtesy of a Notre Dame course give a nice
example of this in action using the well-known Jacobi method. Carrying
out an iteration of an iterative method outputs an approximation that
is better than the input because the methods are defined in a way that
causes this to happen, and this is a property called convergence. When
looking at why any given method converges, things get abstract pretty
quickly. I think this is outside the scope of your question,
especially since I don't know what method(s) Unity uses anyway.
When physics is calculated in Unity, we end up with a lot of systems
of equations. We could draw a free-body diagram to show forces and
torques during a collision for a given FixedUpdate in a Unity runtime
to show this. We could try to solve them "directly", which means to
use logical relationships to determine the exact results of the values
(like solving for x in algebra class), but even if the systems are on
the simple side, doing a lot of them will slow the execution to a
crawl. Luckily, iterative, "indirect" methods can be used to get a
pretty good approximation at a fraction of the computing cost.
Increasing the number of iterations will lead to more precise
approximate solutions. There is a point where increasing the number of
iterations gives an increase in precision that is not at all worth the
processing overhead of doing another iteration. But the number of
iterations for this point depends on what you need your project to do.
Sometimes a given arrangement of physics objects will result in jitter
with the default settings that might be improved with more solver
iterations, which is mentioned in the manual entry. There isn't a
great way to determine if changing solver iteration counts will
improve behavior or performance in the way that you need, except for
just trial and error (use the Profiler for a more-objective indication
of performance impact).
https://forum.unity.com/threads/what-does-default-solver-iteration-means.673912/#post-4512004

Solving Delayed Differential Equations using ode45 Matlab

I am trying to solve DDE using ode45 in Matlab. My question is about the way that I am solving this equation. I don't know if I am right or I am wrong and I should use dde23 instead.
I have a following equation:
xdot(t)=Ax+BU(t-td)+E(t) & U(t-td)=Kx(t-td) & K=constant
Normally, when I don’t have delay on my equation, I solve this using ode45. Now with delay on my equation, again I am using ode45 to get the result. I have the exact amount of U(t-td) at each step and I replace its amount and solve the equation.
Is my solution correct or should I use dde23?
You have two problems here:
ode45 is a solver with adaptive step size. This means that your sampling steps are not necessarily equivalent to the actual integration steps. Instead, the integrator splits a sampling step into several integration steps as needed to achieve the desired accuracy (see this question on Scientific Computing for more information).
As a consequence, you may not provide correct delayed value of U at each step of the integration, even if you believe to do so.
However, if your sampling steps are sufficiently small, you will indeed have one time step per sampling step. The reason for this is that you effectively disable the adaptive integration by making your time step smaller than needed (and thus waste computation time).
Higher-order Runge–Kutta methods such as ode45 do not only make use of the value of the derivative at each integration step, but also evaluate it in-between (and no, they cannot provide a usable solution for this in-between time step).
For example, suppose that your delay and integration step are td=16. To make the integration step from t=32 to t=48, you need to evaluate U not only at t = 32−16 = 16 and t = 48−16 = 32, but also at t = 40−16 = 24. Now, you might say: Okay, let’s integrate such that we have an integration step at all those time points. But for these integration steps, you again need steps in the middle, e.g., if you want to integrate from t=16 to t=24, you need to evaluate U at t=0, t=4, and t=8. You get a never-ending cascades of smaller and smaller time steps.
Due to problem 2, it is impossible to provide the exact states from the past with any but a one-step integrator – using which is probably not a good idea in your case. For this reason, it is inevitable to use some sort of interpolation to obtain past values if you want to integrate DDEs with a multi-step integrator. dde23 does this in a sophisticated way using a good interpolation.
If you only provide U at the integration steps, you are essentially performing a piecewise-constant interpolation, which is the worst possible interpolation and therefore requires you to use very small integration steps. While you can do this if you really want to, dde23 with its more sophisticated piecewise cubic Hermite interpolation can work with much larger time steps and integrate adaptively, and therefore will be much faster. Also, it’s less likely that you somehow make a mistake. Finally, dde23 can deal with very small delays (smaller than the integration step), if you’re into that sort of thing.

Neural Networks back propogation

I have gone through neural networks and have understood the derivation for back propagation almost perfectly(finally!). However, I had a small doubt.
We are updating all the weights simultaneously, so what is the guarantee that they lead to a smaller cost. If the weights are updated one by one, it would definitely lead to a lesser cost and it would be similar to linear regression. But if you update all the weights simultaneously, might we not cross the minima?
Also, do we update the biases like we update the weights after each forward propagation and back propagation of each test case?
Lastly, I have started reading on RNN's. What are some good resources to understand BPTT in RNN's?
Yes, updating only one weight at the time could result in decreasing error value every time but it's usually infeasible to do such updates in practical solutions using NN. Most of today's architectures usually have ~ 10^6 parameters so one epoch for every parameter could last enormously long. Moreover - because of nature of backpropagation - you usually have to compute loads of different derivatives in order to compute derivative with respect to a parameter given - so you will waste a lot of computations when using such approach.
But the phenomenon which you mention has been noticed a long time ago and there are some ways in dealing with it. There are two most common issues connected with it:
Covariance shift: it's when error and weight updates of a layer given strongly depends on output from previous layer, so when you update it - the results in the next layer might be different. The most common way to deal with this problem right now is Batch normalization.
Nolinear function vs Linear Differentation: it's quite uncommon when you think about BP but derivative is a linear operator which might generate a lot of problems in gradient descent. The most countintuitive example is the fact that if you multiply your input by a constant then every derivative will also be multiplied by the same number. This may lead to a lot of problems but most of recent methods of learning do a great job in dealing with it.
About BPTT I stronly recomend you Geoffrey Hinton course about ANN and especially this video.

3rd-order rate limiter in Simulink? How to generate smooth triggered signals?

First for those, who are not familiar with Simulink, there is a imaginable outside-Simulink partial solution:
I need to create a vector satisfying the following conditions:
known initial value a1
known final value a2
it has a pre-defined step size, but the length is not pre-determined
the first derivative over the whole range is limited to v_max resp. -v_max
the second derivative over the whole range is limited to a_max resp. -a_max
the third derivative over the whole range is limited to j_max resp. -j_max
at the first and the final point all derivatives are zero.
Before you ask "what have you tried so far", I just had the idea to solve it outside Simulink and I tried the whole stuff below ;)
But maybe you guys have a good idea, while I keep working on my own solution.
I'd like to generate smooth ramp signals (3rd derivative limited) based on a trigger signal in Simulink.
To get a triggered step I created a triggered subsystem propagating the trigger output. It looks like that:
But I actually don't want a step, I need a very smooth ramp with limited derivatives up to the 3rd order. The math behind is:
displacement: x
speed: v = x'
acceleration: a = v' = x''
jerk: j = a' = v'' = x'''
(If this looks familiar to you, I once had a very similar question. I thought about a bounty on it, but after the necessary edit of the question both answers would have been invalid)
As there are just rate limiters of 1st order, I used two derivates and a double integration to resolve my problem. But there is a mayor drawback, I can not ignore anymore. For the sake of illustration I chose a relatively big step size of 0.1.
The complete minimal example (Fixed Step, stepsize: 0.1, ode4): Download here
It can be seen, that the signal not even reaches the intended step height of 10 and furthermore is not constant at the end.
Over the development process of my whole model, this approach was satisfactory enough for small step sizes. But I reached the point where I really need the smooth ramp as intended. That means I need a finally constant signal at exactly the value, specified by the step height gain.
I already spent days to resolve the problem, and hope to fine some help here now.
Some of my ideas:
dynamically increase the step height over the actual desired value and saturate the final output. If the rate limits,step height and the simulation step size wouldn't be flexible one could probably find a satisfying solution. But as everything has to be flexible, there are too much cases where the acceleration and jerk limit is violated.
I tried to use the Matlab function block and write my own 3rd order rate limiter. Though it seems possible for me for the trigger moment, I have no solution how to smooth the "deceleration" at the end of the ramp. Also I'd need C-compilers, which would make it hard to use my model on other systems without problems. (At least I think so.)
The solver can not be changed siginificantly (either ode3 or ode4) and a fixed step size is mandatory (0.00001 to 0.01).
Currently used, not really useful approach:
For a dynamic amplification of 1.07 I get the following output (all values normalised on their limits):
Though the displacement looks nice, the violation of the acceleration limit is very harmful.
For a dynamic amplification of 1.05 I get the following output (all values normalised on their limits):
The acceleration stays in its boundaries, but the displacement does not reach the intended value. (not really clear in the picture) The jerk is still to big. (I could live with that, but it's not nice)
So it appears to me that a inside-Simulink solutions is far from reality. Any ideas how to create a well-behaving custom function block?
Simulation step size, step height, and the rate limits are known before the simulation starts. (But I have a lot of these triggered smooth ramps in a row, it should feed a event-discrete control). So I could imagine to create the whole smooth ramp outside simulink and save it as a timeseries object and append it on the current signal when the trigger is activated.
The problems you see are because the difference is not conditioned very well.
Taking the difference amplifies the numerical that exists in your simulation.
Also the jerk will always be large if you try to apply an actual step.
I guess for your approach it would be better to work the other way around:
i.e. make a jerk, acceleration and velocity with which your step is achieved.
I think your looking for something like the ref3 block:
http://www.dct.tue.nl/home_of_ref3.htm
Note the disclaimer on the site and that it is a little cumbersome to use.
An easy (yet to be improved) way is to use a rate limiter and then a state space model with a filter. From the filter you get the velocity, which in turn you can apply a rate limiter to. You continue with rate-limiter and filters until you have the desired curve.
Otherwise you can come up with numerical rate-limiters of higher order using ie runge kutta formulas or finite differences. However it was pointed out, that they may suffer from bad conditioning.
What I usually do is to use one rate limiter and a filter of 3rd Order and just tune the time constant (1 tripple pole), such that my needs are met. This works well, esp
Integrator chains of length > 1 are unstable!
There is a huge field of research dealing with trajectory planning. The easiest way might be to use FIR filters (Biagotti et al) or to implement an online trajectory planner (Ezair et al 2014 / Knierim et al 2012).

Reducing calculation time for derivative blocks in SimMechanics

I have a program in SimMechanics that uses 6 derivative blocks (du/dt). It takes about 24 hours to do 10 secs of simulation. Is there any way to reduce the calculation time of the Simulink derivative blocks?
You don't say what your integration time step is. If it's on the order of milliseconds, and you're simulating a 10 sec total transient time, that means 10,000 time steps.
The stability limit of the time step is determined by the characteristics of the dynamic system you're simulating.
It's also affected by the integration scheme you're using. Explicit integration is well-known to have stability problems for larger time steps, so if you're using an Euler method of integration you'll be forced to use a small time step.
Maybe you can switch your integration scheme to an implicit method, 5th order Runge Kutta with error correction, or Burlich-Storer. See your documentation for details.
You've given no useful information about the physics of the system of interest, the size of the model, or your simulation choices, so all this is an educated guess on my part.
Runge-Kutta methods (called ODE45 or ODE23 in Matlab dialect) are not always useful with mechanical problems, due to best performance with variable time slice setup. Move to fixed time setup and select the solver by evaluating the error order you can admit. Refer to both Matlab documentation (and some Numerical Analysis texts too, :-) ) for deeper detail.
Consider also if your problem needs some "stiff-enabled" technique of resolution. Huge constant terms could drive to instability your solver if not properly handled.