how to regenerate meson for newly added yaml files - yocto

I have added yaml files to add new dbus objects and I added PHOSPHOR_MAPPER_SERVICE_append = " com/newCoName"
(newCoName is the name of my company)
But when I run bitbake, do_configure for phosphor_mapper bails when it passes the option -Ddata_com_newCoName to meson. The following readme says I need to run ./regenerate_meson from the gen directory when I add new YAML files. But how do I do that from a recipe file?
https://github.com/openbmc/phosphor-dbus-interfaces

One option is to generate these files outside ot yocto environment (i.e. not involving bitbake). Thus
clone that git repo
place your yaml file where you cloned repo
do what readme tells, i.e. go to gen directory and execute meson-regenerate script
collect changes that are done by script and create patch
add patch to your layer and reference it in .bbappend file (meta-/recipes-phosphor/dbus/phosphor-dbus-interfaces_git.bbappend)
Another option would be to add to .bbappend file additional task that runs before do_configure - and call that script from there:
do_configure_prepend() {
cd ${S}/gen && ./meson-regenerate
}
Along this .bbappend you should add your yaml so that it lands inside gen folder in patch or directly in your layer (check FILESEXTRAPATHS).
In both cases you'll need to patch meson_options.txt: add option
option('data_com_newCoName', type: 'boolean', value: true)

Related

How to display new Yocto image option after source poky/oe-init-env

let say i have a new yocto image call stargazer-cmd
what file should i edit so that every time i source poky/oe-init-env
it display as a build option to the user?
kj#kj-Aspire-V3-471G:~/stm32Yoctominimal$ source poky/oe-init-build-env build-mp1/
### Shell environment set up for builds. ###
You can now run 'bitbake <target>'
Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
meta-ide-support
I wish to add stargazer-cmd on top of core-image-minimal, i am not sure what to google and what is the file i need to change.
Let me explain how to add a custom configuration to the OpenEmbedded build process.
First of all, here is the process that is done when running:
source poky/oe-init-build-env
The oe-init-build-env script initializes OEROOT variable to point to the location of the script itself.
The oe-init-build-env script sources another file $OEROOT/scripts/oe-buildenv-internal which will:
Check if OEROOT is set
Set BUILDDIR to your custom build directory name $1, or just build if you do not provide one
Set BBPATH to the poky/bitbake folder
Adds $BBPATH/bin and OEROOT/scripts to PATH (This will enable commands like bitbake and bitbake-layers ...)
Export BUILDDIR and PATH to the next file
The oe-init-build-env script continues by running the final build script with:
TEMPLATECONF="$TEMPLATECONF" $OEROOT/scripts/oe-setup-builddir
The oe-setup-builddir script will:
Check if BUILDDIR is set
Create the conf directory under $BUILDDIR
Sources a template file that will check if there is a TEMPLATECONF variable is set:
. $OEROOT/.templateconf
That file contains:
# Template settings
TEMPLATECONF=${TEMPLATECONF:-meta-poky/conf}
it means that if TEMPLATECONF variable is not set, set it to meta-poky/conf, and that is where the default local.conf and bblayers.conf are coming from.
Copy $TEMPLATECONF to $BUILDDIR/conf/templateconf.cfg
Set some variables pointing to custom local.conf and bblayers.conf:
OECORELAYERCONF="$TEMPLATECONF/bblayers.conf.sample"
OECORELOCALCONF="$TEMPLATECONF/local.conf.sample"
OECORENOTESCONF="$TEMPLATECONF/conf-notes.txt"
In the oe-setup-builddir there is a comment saying that TEMPLATECONF can point to a directory:
#
# $TEMPLATECONF can point to a directory for the template local.conf & bblayers.conf
#
Copy local.conf.sample and bblayers.conf.sample from TEMPLATECONF directory into BUIDDIR/conf:
cp -f $OECORELOCALCONF "$BUILDDIR/conf/local.conf"
sed -e "s|##OEROOT##|$OEROOT|g" \
-e "s|##COREBASE##|$OEROOT|g" \
$OECORELAYERCONF > "$BUILDDIR/conf/bblayers.conf"
Finally it will print what is inside OECORENOTESCONF which points to TEMPLATECONF/conf-notes.txt:
[ ! -r "$OECORENOTESCONF" ] || cat $OECORENOTESCONF
and by default that is located under meta-poky/conf/conf-notes.txt:
### Shell environment set up for builds. ###
You can now run 'bitbake <target>'
Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
meta-ide-support
You can also run generated qemu images with a command like 'runqemu qemux86'
Other commonly useful commands are:
- 'devtool' and 'recipetool' handle common recipe tasks
- 'bitbake-layers' handles common layer tasks
- 'oe-pkgdata-util' handles common target package tasks
So, now, after understanding all of that, here is what you can do:
Create a custom template directory for your project, containing:
local.conf.sample
bblayers.conf.sample
conf-notes.txt
Do not forget to set the path to poky in bblayers.conf to ##OEROOT## as it will be set automatically by the build script.
Set your custom message in conf-notes.txt
Before any new build, just set TEMPLATECONF:
TEMPLATECONF="<path/to/template-directory>" source poky/oe-init-build-env <build_name>
Then, you will find a build with your custom local.conf and bblayers.conf with additional file conf/templateconf.cfg containing the path of TEMPLATECONF
conf/conf-notes.txt in your layer.
OECORENOTESCONF should point to the file.

AWS CDK asset path is incorrect

On September 6, I ran a build using CodePipeline. It generates a CloudFormation template for a project's stack using CDK. The stack has assets (a Lambda Layer), and the assets are correctly placed in the cdk.out folder. This can be seen in the CloudFormation template:
"Metadata": {
"aws:cdk:path": "MyStack/MyLayer/Resource",
"aws:asset:path": "asset.ccb8fd8b4259a8f517879d7aaa083679461d02b9d60bfd12725857d23567b70f",
"aws:asset:property": "Content"
}
Starting yesterday, builds were failing with "Uploaded file must be a non-empty zip". When I investigated further, I noticed that the template was no longer correct. It has the asset path set to the source code of the Lambda instead:
"Metadata": {
"aws:cdk:path": "MyStack/MyLayer/Resource",
"aws:asset:path": "/codebuild/output/src216693626/src/src/lambdas/layers",
"aws:asset:property": "Content"
}
When I build, I've added additional commands to the buildspec file which shows that the assets.abcdef folder has the layer and its dependencies, while the src folder does not. Yet the template is now different.
No code was changed in this time period, and I've tried both CDK version 1.105.0 and 1.119.0.
This code declares the Layer:
new lambdapython.PythonLayerVersion(this.stack, 'MyLayer', {
entry: path.join(__dirname, '../../src/lambdas/layers'),
description: 'Common utilities for the Lambdas',
compatibleRuntimes: [lambda.Runtime.PYTHON_3_8],
layerVersionName: `${Aws.STACK_NAME}Utils`,
});
Is there a known way for me to force the stack to use the assets in the cdk.out folder? Has something changed in the last couple of days with respect to how CDK generates the template's asset path?
It turns out that I had added a cdk ls to print out additional debugging information while troubleshooting another problem. That command re-synthesized the stack, but with the incorrect asset path.
build: {
commands: [
'cd ' + config.cdkDir,
'cdk synth',
'cdk ls --long'
]
}
The solution was to delete the cdk ls --long from the buildspec definition.

How can I get "HelloWorld - BitBake Style" working on a newer version of Yocto?

In the book "Embedded Linux Systems with the Yocto Project", Chapter 4 contains a sample called "HelloWorld - BitBake style". I encountered a bunch of problems trying to get the old example working against the "Sumo" release 2.5.
If you're like me, the first error you encountered following the book's instructions was that you copied across bitbake.conf and got:
ERROR: ParseError at /tmp/bbhello/conf/bitbake.conf:749: Could not include required file conf/abi_version.conf
And after copying over abi_version.conf as well, you kept finding more and more cross-connected files that needed to be moved, and then some relative-path errors after that... Is there a better way?
Here's a series of steps which can allow you to bitbake nano based on the book's instructions.
Unless otherwise specified, these samples and instructions are all based on the online copy of the book's code-samples. While convenient for copy-pasting, the online resource is not totally consistent with the printed copy, and contains at least one extra bug.
Initial workspace setup
This guide assumes that you're working with Yocto release 2.5 ("sumo"), installed into /tmp/poky, and that the build environment will go into /tmp/bbhello. If you don't the Poky tools+libraries already, the easiest way is to clone it with:
$ git clone -b sumo git://git.yoctoproject.org/poky.git /tmp/poky
Then you can initialize the workspace with:
$ source /tmp/poky/oe-init-build-env /tmp/bbhello/
If you start a new terminal window, you'll need to repeat the previous command which will get get your shell environment set up again, but it should not replace any of the files created inside the workspace from the first time.
Wiring up the defaults
The oe-init-build-env script should have just created these files for you:
bbhello/conf/local.conf
bbhello/conf/templateconf.cfg
bbhello/conf/bblayers.conf
Keep these, they supersede some of the book-instructions, meaning that you should not create or have the files:
bbhello/classes/base.bbclass
bbhello/conf/bitbake.conf
Similarly, do not overwrite bbhello/conf/bblayers.conf with the book's sample. Instead, edit it to add a single line pointing to your own meta-hello folder, ex:
BBLAYERS ?= " \
${TOPDIR}/meta-hello \
/tmp/poky/meta \
/tmp/poky/meta-poky \
/tmp/poky/meta-yocto-bsp \
"
Creating the layer and recipe
Go ahead and create the following files from the book-samples:
meta-hello/conf/layer.conf
meta-hello/recipes-editor/nano/nano.bb
We'll edit these files gradually as we hit errors.
Can't find recipe error
The error:
ERROR: BBFILE_PATTERN_hello not defined
It is caused by the book-website's bbhello/meta-hello/conf/layer.conf being internally inconsistent. It uses the collection-name "hello" but on the next two lines uses _test suffixes. Just change them to _hello to match:
# Set layer search pattern and priority
BBFILE_COLLECTIONS += "hello"
BBFILE_PATTERN_hello := "^${LAYERDIR}/"
BBFILE_PRIORITY_hello = "5"
Interestingly, this error is not present in the printed copy of the book.
No license error
The error:
ERROR: /tmp/bbhello/meta-hello/recipes-editor/nano/nano.bb: This recipe does not have the LICENSE field set (nano)
ERROR: Failed to parse recipe: /tmp/bbhello/meta-hello/recipes-editor/nano/nano.bb
Can be fixed by adding a license setting with one of the values that bitbake recognizes. In this case, add a line onto nano.bb of:
LICENSE="GPLv3"
Recipe parse error
ERROR: ExpansionError during parsing /tmp/bbhello/meta-hello/recipes-editor/nano/nano.bb
[...]
bb.data_smart.ExpansionError: Failure expanding variable PV_MAJOR, expression was ${#bb.data.getVar('PV',d,1).split('.')[0]} which triggered exception AttributeError: module 'bb.data' has no attribute 'getVar'
This is fixed by updating the special python commands being used in the recipe, because #bb.data was deprecated and is now removed. Instead, replace it with #d, ex:
PV_MAJOR = "${#d.getVar('PV',d,1).split('.')[0]}"
PV_MINOR = "${#d.getVar('PV',d,1).split('.')[1]}"
License checksum failure
ERROR: nano-2.2.6-r0 do_populate_lic: QA Issue: nano: Recipe file fetches files and does not have license file information (LIC_FILES_CHKSUM) [license-checksum]
This can be fixed by adding a directive to the recipe telling it what license-info-containing file to grab, and what checksum we expect it to have.
We can follow the way the recipe generates the SRC_URI, and modify it slightly to point at the COPYING file in the same web-directory. Add this line to nano.bb:
LIC_FILES_CHKSUM = "${SITE}/v${PV_MAJOR}.${PV_MINOR}/COPYING;md5=f27defe1e96c2e1ecd4e0c9be8967949"
The MD5 checksum in this case came from manually downloading and inspecting the matching file.
Done!
Now bitbake nano ought to work, and when it is complete you should see it built nano:
/tmp/bbhello $ find ./tmp/deploy/ -name "*nano*.rpm*"
./tmp/deploy/rpm/i586/nano-dbg-2.2.6-r0.i586.rpm
./tmp/deploy/rpm/i586/nano-dev-2.2.6-r0.i586.rpm
I have recently worked on that hands-on hello world project. As far as I am concerned, I think that the source code in the book contains some bugs. Below there is a list of suggested fixes:
Inheriting native class
In fact, when you build with bitbake that you got from poky, it builds only for the target, unless you mention in your recipe that you are building for the host machine (native). You can do the latter by adding this line at the end of your recipe:
inherit native
Adding license information
It is worth mentioning that the variable LICENSE is important to be set in any recipe, otherwise bitbake rises an error. In our case, we try to build the version 2.2.6 of the nano editor, its current license is GPLv3, hence it should be mentioned as follow:
LICENSE = "GPLv3"
Using os.system calls
As the book states, you cannot dereference metadata directly from a python function. Which means it is mandatory to access metadata through the d dictionary. Bellow, there is a suggestion for the do_unpack python function, you can use its concept to code the next tasks (do_configure, do_compile):
python do_unpack() {
workdir = d.getVar("WORKDIR", True)
dl_dir = d.getVar("DL_DIR", True)
p = d.getVar("P", True)
tarball_name = os.path.join(dl_dir, p+".tar.gz")
bb.plain("Unpacking tarball")
os.system("tar -x -C " + workdir + " -f " + tarball_name)
bb.plain("tarball unpacked successfully")
}
Launching the nano editor
After successfully building your nano editor package, you can find your nano executable in the following directory in case you are using Ubuntu (arch x86_64):
./tmp/work/x86_64-linux/nano/2.2.6-r0/src/nano
Should you have any comments or questions, Don't hesitate !

bitbake recipe - doing a simple copy of the image

I am attempting to write a recipe that would simple copy two files (MyfileA , MyfileB) to a specific directory when the overall image is built. This is what my directory structure looks like:
MyDir/MyRecipe.bb
MyDir/files/MyfileA
MyDir/files/MyfileB
I would like the two files to be copied to a folder in home (which would not exist initially hence the directories should be created)The folder lets say is called "Testfolder"
This is what my bitbake file looks like
DESCRIPTION = "Testing Bitbake file"
PR = "r0"
SRC_URI = "file://MyfileA \
file://MyfileB "
do_install() {
install -d MyfileA ~/TestFolder/
}
Kindly let me know if I am doing something wrong here?
When i run bitbake on this I get the following
The BBPATH variable is not set and bitbake did not find a conf/bblayers.conf file in the expected location.
Maybe you accidentally invoked bitbake from the wrong directory?
DEBUG: Removed the following variables from the environment: LANG, LS_COLORS, LESSCLOSE, XDG_RUNTIME_DIR, SHLVL, SSH_TTY, OLDPWD, LESSOPEN, SSH_CLIENT, MAIL, SSH_CONNECTION, XDG_SESSION_ID, _, BUILDDIR
Any help in this regard would be appreciated.
First of all, to create your own meta-layer, you should run command yocto-layer create MyRecipe in your Yocto Environment. This is to make sure that you have all the necessary element in your meta layer. Make sure to put the new meta-layer into conf/bblayers.conf
Creating HelloWorld Recipe Video can be found here
Second, to copy a file from one to another directories.
DESCRIPTION = "Testing Bitbake file"
SECTION = "TESTING"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"
PR = "r0"
SRC_URI = "file://MyfileA \
file://MyfileB "
#specify where to get the files
S = "${WORKDIR}"
inherit allarch
#create the folder in target machine
#${D} is the directory of the target machine
#move the file from working directory to the target machine
do_install() {
install -d ${D}/TestFolder
install -m ${WORKDIR}/MyfileA ${D}/TestFolder
}
To get more in details, this is my understanding of how the files move around in Yocto.
You have a directory that stored metadata in /sourced/meta-mylayer/recipes-myRecipe/. In that directory, there would be a folder with the same name as the recipe. I.E. myRecipe/ myRecipe_001.bb.
You would store the files that are related to myRecipe.bb (usually it is a patch) in myRecipe/ so that SRC_URI will get into that myRecipe/ directory to grab files. I.E. myFileA, myFileB
Then, you specify the S. This is the location in the Build Directory where unpacked recipe source code resides. By that mean, myFileA and myFileB are moved/copied to there when myRecipe builds.
Usually, S is equal to ${WORKDIR}, this is equivalent to ${TMPDIR}/work/${MULTIMACH_TARGET_SYS}/${PN}/${EXTENDPE}${PV}-${PR}
The actual directory depends on several things:
TMPDIR: The top-level build output directory
MULTIMACH_TARGET_SYS: The target system identifier
PN: The recipe name
EXTENDPE: The epoch - (if PE is not specified, which is usually the case for most recipes, then EXTENDPE is blank)
PV: The recipe version
PR: The recipe revision
After that, we inherit allarch. This class is used for architecture independent recipes/data files (usually scripts).
Then, the last thing we have to do is copy the files.
${D} is the location in the Build Directory where components are installed by do_install task. This location defaults to ${WORKDIR}/image
${WORKDIR}/image can also be described as the / directory in the target system.
Go to ${D} directory and create a folder call TestFolder
Then, copy myFileA from ${WORKDIR} to the ${D}/TestFolder
P.S. Please add comment to fix. There might be mistaken information here, cause I learned all this by myself.

opkg install error - wfopen no such file or directory

I have followed instructions to create an .ipk file, the Packages.gz and host them on a web server as a repo. I have set the opkg.conf in my other VM to point to this repo. The other VM is able to update and list the contents of repositories successfully.
But, when I try to install, I get this message. Can you please describe why I am getting this and what needs to be changed?
Collected errors:
* wfopen: /etc/repo/d1/something.py: No such file or directory
* wfopen: /etc/repo/d1/something-else.py: No such file or directory
While creating the .ipk, I had created a folder named data that had a file structure as /etc/repo/d1/ with the file something.py stored at d1 location. I zipped that folder to data.tar.gz. And, then together with control.tar.gz and 'debian-binary`, I created the .ipk.
I followed instructions from here:
http://bitsum.com/creating_ipk_packages.htm
http://www.jumpnowtek.com/yocto/Managing-a-private-opkg-repository.html
http://www.jumpnowtek.com/yocto/Using-your-build-workstation-as-a-remote-package-repository.html
It is very likely that the directory called /etc/repo/d1/ does not exist on the target system. If you create the folder manually, and try installing again, it probably will not fail. I'm not sure how to force opkg to create the empty directory by itself :/
Update:
You can solve this problem using a preinst script. Just create the missing directories on it, like this:
#!/bin/sh
mkdir -p /etc/repo/d1/
# always return 0 if success
exit 0