I'm writing a function that computes the sparsity of the weight matrices of the following fully connected network:
class FCN(nn.Module):
def __init__(self):
super(FCN, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(hidden_dim, hidden_dim)
self.relu3 = nn.ReLU()
self.fc4 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
out = self.fc1(x)
out = self.relu1(out)
out = self.fc2(out)
out = self.relu2(out)
out = self.fc3(out)
out = self.relu3(out)
out = self.fc4(out)
return out
The function I have written is the following:
def print_layer_sparsity(model):
for name,module in model.named_modules():
if 'fc' in name:
zeros = 100. * float(torch.sum(model.name.weight == 0))
tot = float(model.name.weight.nelement())
print("Sparsity in {}.weight: {:.2f}%".format(name, zeros/tot))
But it gives me the following error:
torch.nn.modules.module.ModuleAttributeError: 'FCN' object has no attribute 'name'
It works fine when I manually enter the name of the layers (e.g.,
(model.fc1.weight == 0)
(model.fc2.weight == 0)
(model.fc3.weight == 0) ....
but I'd like to make it independent from the network. In other words, I'd like to adapt my function in a way that, given any sparse network, it prints the sparsity of every layer. Any suggestions?
Thanks!!
Try:
getattr(model, name).weight
In place of
model.name.weight
Your print_layer_sparsity function becomes:
def print_layer_sparsity(model):
for name,module in model.named_modules():
if 'fc' in name:
zeros = 100. * float(torch.sum(getattr(model, name).weight == 0))
tot = float(getattr(model, name).weight.nelement())
print("Sparsity in {}.weight: {:.2f}%".format(name, zeros/tot))
You can't do model.name because name is a str. The in-built getattr function allows you to get the member variables / attributes of an object using its name as a string.
For more information, checkout this answer.
Related
I am new to stackoverflow, so I apologize for any errors while asking a question. I am trying to solve the cartpole-v1 gym environment using a dqn agent. I am facing an issue as follows ValueError: Weights for model sequential have not yet been created. Weights are created when the Model is first called on inputs or build() is called with an input_shape. I've searched how to fix this but to no success. My tensorflow version is 2.8.0. My code for my agent is as follows. I believe, the problem is most probably due to my build_model and in the model.fit line. This is the error that I am facing
class DQNAgent0:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # discount factor
self.epsilon = 1.0 # 100% exploration at the start
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
'''model = tf.keras.Sequential([
tf.keras.layers.Dense(1),
#tf.keras.Input((self.state_size,)),
tf.keras.layers.Dense(24, activation="relu"),
tf.keras.layers.Dense(24, activation="relu"),
tf.keras.layers.Dense(self.action_size, activation="linear"),
])
model.compile(loss=tf.keras.losses.mse,
optimizer=tf.keras.optimizers.Adam(learning_rate=self.learning_rate))'''
#model = tf.keras.Sequential()
model = tf.keras.Sequential([tf.keras.layers.Dense(1)])
model.add(tf.keras.Input(shape = self.state_size))
model.add(tf.keras.layers.Dense(24, activation = 'relu'))
model.add(tf.keras.layers.Dense(24, activation = 'relu'))
model.add(tf.keras.layers.Dense(self.action_size, activation = 'linear'))
#opt = tf.keras.optimizers.Adam(learning_rate = self.learning_rate)
#model.compile(loss = 'mse', optimizer = opt)
model.compile(loss = tf.keras.losses.mse, optimizer = tf.keras.optimizers.Adam(learning_rate = self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random .randrange(self.action_size) # exploratory action
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
#creating a random sample from our memory
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma * np.amax(self.model.predict(next_state[0]))) # reward at current timestep + discounted future reward
target_f = self.model.predict(state)
target_f[0][action] = target #mapping future reward to the current reward
self.model.fit(tf.expand_dims(state, axis=-1), target_f, epochs = 1, verbose = 0) # fitting a model to train with state as input x and target_f as y (predicted future reward)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
I'm trying to build a Pytorch network for image captioning.
Currently I have a working network of Encoder and Decoder, and I want to add nn.MultiheadAttnetion layer to it (to be used as self attention).
Currently my decode looks like this:
class Decoder(nn.Module):
def __init__(self, hidden_size, embed_dim, vocab_size, layers = 1):
super(Decoder, self).__init__()
self.embed_dim = embed_dim
self.vocab_size = vocab_size
self.layers = layers
self.hidden_size = hidden_size
self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
self.lstm = nn.LSTM(input_size = embed_dim, hidden_size = hidden_size, batch_first = True, num_layers = layers)
#self.attention = nn.MultiheadAttention(hidden_size, num_heads=1, batch_first= True)
self.fc = nn.Linear(hidden_size, self.vocab_size)
def init_hidden(self, batch_size):
h = torch.zeros(self.layers, batch_size, self.hidden_size).to(device)
c = torch.zeros(self.layers, batch_size, self.hidden_size).to(device)
return h,c
def forward(self, features, caption):
batch_size = caption.size(0)
caption_size = caption.size(1)
h,c = self.init_hidden(batch_size)
embeddings = self.embedding(caption)
lstm_input = torch.cat((features.unsqueeze(1), embeddings[:,:-1,:]), dim=1)
output, (h,c) = self.lstm(lstm_input, (h,c))
#output, _ = self.attention(output, output, output)
output = self.fc(output)
return output
def generate_caption(self, features, max_caption_size = MAX_LEN):
h,c = self.init_hidden(1)
caption = ""
embeddings = features.unsqueeze(1)
for i in range(max_caption_size):
output, (h, c) = self.lstm(embeddings, (h,c))
#output, _ = self.attention(output, output, output)
output = self.fc(output)
_, word_index = torch.max(output, dim=2) # take the word with highest probability
if word_index == vocab.get_index(END_WORD):
break
caption += vocab.get_word(word_index) + " "
embeddings = self.embedding(torch.LongTensor([word_index]).view(1,-1).to(device))
return caption
and it gives relatively good results for image captioning.
I want to add the commented out lines so the model will use Attention. But- when I do that- the model breaks, although the loss becomes extremely low (decreasing from 2.7 to 0.2 during training instead of 2.7 to 1 without the attention) - the caption generation is not really working (predicts the same word over and over again).
My questions are:
Am I using the nn.MultiheadAttention correctly? it is very weird to me that it should be used after the LSTM, but I saw this online, and it works from dimension sizes perspective
Any idea why my model breaks when I use Attention?
EDIT: I also tried to put the Attention before the LSTM, and it didn't work as well (network predicted the same caption for every picture)
I have a training function, in which inside there are two vectors:
d_labels_a = torch.zeros(128)
d_labels_b = torch.ones(128)
Then I have these features:
# Compute output
features_a = nets[0](input_a)
features_b = nets[1](input_b)
features_c = nets[2](inputs)
And then a domain classifier (nets[4]) makes predictions:
d_pred_a = torch.squeeze(nets[4](features_a))
d_pred_b = torch.squeeze(nets[4](features_b))
d_pred_a = d_pred_a.float()
d_pred_b = d_pred_b.float()
print(d_pred_a.shape)
The error raises in the loss function: ` pred_a = torch.squeeze(nets3)
pred_b = torch.squeeze(nets3)
pred_c = torch.squeeze(nets3)
loss = criterion(pred_a, labels_a) + criterion(pred_b, labels_b) + criterion(pred_c, labels) + d_criterion(d_pred_a, d_labels_a) + d_criterion(d_pred_b, d_labels_b)
The problem is that d_pred_a/b is different from d_labels_a/b, but only after a certain point. Indeed, when I print the shape of d_pred_a/b it istorch.Size([128])but then it changes totorch.Size([112])` independently.
It comes from here:
# Compute output
features_a = nets[0](input_a)
features_b = nets[1](input_b)
features_c = nets[2](inputs)
because if I print the shape of features_a is torch.Size([128, 2048]) but it changes into torch.Size([112, 2048])
nets[0] is a VGG, like this:
class VGG16(nn.Module):
def __init__(self, input_size, batch_norm=False):
super(VGG16, self).__init__()
self.in_channels,self.in_width,self.in_height = input_size
self.block_1 = VGGBlock(self.in_channels,64,batch_norm=batch_norm)
self.block_2 = VGGBlock(64, 128,batch_norm=batch_norm)
self.block_3 = VGGBlock(128, 256,batch_norm=batch_norm)
self.block_4 = VGGBlock(256,512,batch_norm=batch_norm)
#property
def input_size(self):
return self.in_channels,self.in_width,self.in_height
def forward(self, x):
x = self.block_1(x)
x = self.block_2(x)
x = self.block_3(x)
x = self.block_4(x)
# x = self.avgpool(x)
x = torch.flatten(x,1)
return x
I solved. The problem was the last batch. I used drop_last=True in the dataloader and It worked.
I have the body of the code, which should work fine, I think it doesn't because of something I'm messing up here, probably having to do with the embedding.
import torch.nn as nn
class MultilayerPerceptron(nn.Module):
def __init__(self, input_size, hidden_size): # I removed output size
# Call initializer function of the super class
super(MultilayerPerceptron, self).__init__()
self.embedding = nn.Embedding(INPUT_DIM, EMBEDDING_DIM) #added this myself, maybe wrong
#self.mlp = nn.MultilayerPerceptron(EMBEDDING_DIM, HIDDEN_DIM) #also added
self.INPUT_DIM = INPUT_DIM
self.HIDDEN_DIM = HIDDEN_DIM
self.OUTPUT_DIM = OUTPUT_DIM
self.EMBEDDING_DIM = EMBEDDING_DIM
#whenever this model is called, those layers in the sequential block
#will be processed in the order given to the block.
self.model = nn.Sequential(
#nn.Flatten(), # adding this hopefully it works (it didn't)
#embeds = embedded.mean(dim=1) #god help
nn.Linear(self.INPUT_DIM, self.HIDDEN_DIM), #later on, multiply by embedding dimensionality #I removed
nn.ReLU(),
nn.Linear(self.HIDDEN_DIM, self.OUTPUT_DIM), #one layer neural network
nn.ReLU(), # do I need this?
nn.Sigmoid(),
)
def forward(self, x):
embedded = self.embedding(x)
#embedded = [sent len, batch size, emb dim]
output, hidden = self.model(embedded)
output = self.model(x) #call the model defined above for forward propagation.
return output
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100 #how do I fit this into the model??
HIDDEN_DIM = 256
OUTPUT_DIM = 1
model = MultilayerPerceptron(INPUT_DIM, HIDDEN_DIM) #MLP instead
The error I get is "mat1 and mat2 shapes cannot be multiplied (50176x100 and 25002x256)".
I found a code online for Naive bayes classification for a small research I am doing. The code I am using is showing some errors and cannot find the solution for them. I would greatly appreciate your help.
The code is below:
# Example of Naive Bayes implemented from Scratch in Python
import csv
import random
import math
def loadCsv(filename):
lines = csv.reader(open(filename, "rt"))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset
def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return [trainSet, copy]
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
def mean(numbers):
return sum(numbers) / float(len(numbers))
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x - avg, 2) for x in numbers]) / float(len(numbers) - 1)
return math.sqrt(variance)
def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries
def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
return summaries
def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x - mean, 2) / (2 * math.pow(stdev, 2))))
return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = inputVector[i]
probabilities[classValue] *= calculateProbability(x, mean, stdev)
return probabilities
def predict(summaries, inputVector):
probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
def getPredictions(summaries, testSet):
predictions = []
for i in range(len(testSet)):
result = predict(summaries, testSet[i])
predictions.append(result)
return predictions
def getAccuracy(testSet, predictions):
correct = 0
for i in range(len(testSet)):
if testSet[i][-1] == predictions[i]:
correct += 1
return (correct / float(len(testSet))) * 100.0
def main():
filename = 'E:\iris.data.csv'
splitRatio = 0.67
dataset = loadCsv(filename)
trainingSet, testSet = splitDataset(dataset, splitRatio)
print(('Split {0} rows into train={1} and test={2} rows').format(len(dataset), len(trainingSet), len(testSet)))
# prepare model
summaries = summarizeByClass(trainingSet)
# test model
predictions = getPredictions(summaries, testSet)
accuracy = getAccuracy(testSet, predictions)
print(('Accuracy: {0}%').format(accuracy))
main()
The traceback for the same is below:
File "<ipython-input-18-4397d9969e66>", line 1, in <module>
runfile('C:/Users/Lenovo/Desktop/EE Codes/Knn with prima.py', wdir='C:/Users/Lenovo/Desktop/EE Codes')
File "C:\Users\Lenovo\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\Users\Lenovo\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/Lenovo/Desktop/EE Codes/Knn with prima.py", line 76, in <module>
main()
File "C:/Users/Lenovo/Desktop/EE Codes/Knn with prima.py", line 69, in main
neighbors = getNeighbors(trainingSet, testSet[x], k)
File "C:/Users/Lenovo/Desktop/EE Codes/Knn with prima.py", line 31, in getNeighbors
dist = euclideanDistance(testInstance, trainingSet[x], length)
File "C:/Users/Lenovo/Desktop/EE Codes/Knn with prima.py", line 24, in euclideanDistance
distance += pow((instance1[x] - instance2[x]), 2)
TypeError: unsupported operand type(s) for -: 'str' and 'str'
I would request you all to please provide a solution to how to solve this error for the respective code. If you require the dataset then please do ask. I can provide you the link for that too.
Thanks in advance