Difference between minimize(method=’BFGS’) and scipy.optimize.fmin_bfgs - scipy

What is the main difference between minimize(method=’BFGS’) and scipy.optimize.fmin_bfgs? In which situations should one be preferred over the other?

It's the same function.
Choose the interface you prefer, minimize usually being easier to use also allowing to swap out the algorithm if needed.

Related

what is the difference of partial and addChild?

Both are easy to use, both give the same output.
So what is the difference? Are there any advantages to use one or the other? Is there any advantage in performance, security or what ever?
Which one would I use better if I want to manipulate view during runtime?
If we talk on zend-view, both using render's view method then calls rendrChild method recursively. So we can say there's not performance difference.
Here's the zend-view's render method and here partial helper using it

Design - When to create new functions?

This is a general design question not relating to any language. I'm a bit torn between going for minimum code or optimum organization.
I'll use my current project as an example. I have a bunch of tabs on a form that perform different functions. Lets say Tab 1 reads in a file with a specific layout, tab 2 exports a file to a specific location, etc. The problem I'm running into now is that I need these tabs to do something slightly different based on the contents of a variable. If it contains a 1 I may need to use Layout A and perform some extra concatenation, if it contains a 2 I may need to use Layout B and do no concatenation but add two integer fields, etc. There could be 10+ codes that I will be looking at.
Is it more preferable to create an individual path for each code early on, or attempt to create a single path that branches out only when absolutely required.
Creating an individual path for each code would allow my code to be extremely easy to follow at a glance, which in turn will help me out later on down the road when debugging or making changes. The downside to this is that I will increase the amount of code written by calling some of the same functions in multiple places (for example, steps 3, 5, and 9 for every single code may be exactly the same.
Creating a single path that would branch out only when required will be a bit messier and more difficult to follow at a glance, but I would create less code by placing conditionals only at steps that are unique.
I realize that this may be a case-by-case decision, but in general, if you were handed a previously built program to work on, which would you prefer?
Edit: I've drawn some simple images to help express it. Codes 1/2/3 are the variables and the lines under them represent the paths they would take. All of these steps need to be performed in a linear chronological fashion, so there would be a function to essentially just call other functions in the proper order.
Different Paths
Single Path
Creating a single path that would
branch out only when required will be
a bit messier and more difficult to
follow at a glance, but I would create
less code by placing conditionals only
at steps that are unique.
Im not buying this statement. There is a level of finesse when deciding when to write new functions. Functions should be as simple and reusable as possible (but no simpler). The correct answer is almost never 'one big file that does a lot of branching'.
Less LOC (lines of code) should not be the goal. Readability and maintainability should be the goal. When you create functions, the names should be self documenting. If you have a large block of code, it is good to do something like
function doSomethingComplicated() {
stepOne();
stepTwo();
// and so on
}
where the function names are self documenting. Not only will the code be more readable, you will make it easier to unit test each segment of the code in isolation.
For the case where you will have a lot of methods that call the same exact methods, you can use good OO design and design patterns to minimize the number of functions that do the same thing. This is in reference to your statement "The downside to this is that I will increase the amount of code written by calling some of the same functions in multiple places (for example, steps 3, 5, and 9 for every single code may be exactly the same."
The biggest danger in starting with one big block of code is that it will never actually get refactored into smaller units. Just start down the right path to begin with....
EDIT --
for your picture, I would create a base-class with all of the common methods that are used. The base class would be abstract, with an abstract method. Subclasses would implement the abstract method and use the common functions they need. Of course, replace 'abstract' with whatever your language of choice provides.
You should always err on the side of generalization, with the only exception being early prototyping (where throughput of generating working stuff is majorly impacted by designing correct abstractions/generalizations). having said that, you should NEVER leave that mess of non-generalized cloned branches past the early prototype stage, as it leads to messy hard to maintain code (if you are doing almost the same thing 3 different times, and need to change that thing, you're almost sure to forget to change 1 out of 3).
Again it's hard to specifically answer such an open ended question, but I believe you don't have to sacrifice one for the other.
OOP techniques solves this issue by allowing you to encapsulate the reusable portions of your code and generate child classes to handle object specific behaviors.
Personally I think you might (if possible by your API) create inherited forms, create them on fly on master form (with tabs), pass agruments and embed in tab container.
When to inherit form and when to decide to use arguments (code) to show/hide/add/remove functionality is up to you, yet master form should contain only decisions and argument passing and embeddable forms just plain functionality - this way you can separate organisation from implementation.

How can I represent sets in Perl?

I would like to represent a set in Perl. What I usually do is using a hash with some dummy value, e.g.:
my %hash=();
$hash{"element1"}=1;
$hash{"element5"}=1;
Then use if (defined $hash{$element_name}) to decide whether an element is in the set.
Is this a common practice? Any suggestions on improving this?
Also, should I use defined or exists?
Thank you
Yes, building hash sets that way is a common idiom. Note that:
my #keys = qw/a b c d/;
my %hash;
#hash{#keys} = ();
is preferable to using 1 as the value because undef takes up significantly less space. This also forces you to uses exists (which is the right choice anyway).
Use one of the many Set modules on CPAN. Judging from your example, Set::Light or Set::Scalar seem appropriate.
I can defend this advice with the usual arguments pro CPAN (disregarding possible synergy effects).
How can we know that look-up is all that is needed, both now and in the future? Experience teaches that even the simplest programs expand and sprawl. Using a module would anticipate that.
An API is much nicer for maintenance, or people who need to read and understand the code in general, than an ad-hoc implementation as it allows to think about partial problems at different levels of abstraction.
Related to that, if it turns out that the overhead is undesirable, it is easy to go from a module to a simple by removing indirections or paring data structures and source code. But on the other hand, if one would need more features, it is moderately more difficult to achieve the other way around.
CPAN modules are already tested and to some extent thoroughly debugged, perhaps also the API underwent improvement steps over the time, whereas with ad-hoc, programmers usually implement the first design that comes to mind.
Rarely it turns out that picking a module at the beginning is the wrong choice.
That's how I've always done it. I would tend to use exists rather than defined but they should both work in this context.

What is the right code pattern for NSNumberFormatter?

What is the right code pattern for NSNumberFormatter?
There are many example on the Internet (including this one: http://mac-objective-c.blogspot.com/2009/04/nsnumberformatter-some-examples.html) where the NSNumberFormatter is allocated and initialized each time it is needed.
Yet some other examples in the Apple Documentation (including International Mountains) prefer to use it as a private property. Another example (Locations) use it through a static variable.
How do you use an NSNumberFormatter? What is the most efficient technique?
NSNumberFormatter is not an excessively complicated object, so unless you're using it frequently in a tight loop, efficiency doesn't really matter.
With that said, I'd tend to default to keeping it around in a static variable, if you're trying to minimize the number of instances you create.
I think the examples are just showing how to create and use the formatters, not necessarily the most efficient way to use them. My rule of thumb is if the code will use them more than once, I keep them around somewhere. This also makes debugging and maintenance easier.

Is it naughty to have a large utility file?

In my C project I have quite a large utils.c file. It is really full of many utilities of different sorts. I feel a bit naughty just stuffing different miscellaneous functions in there. For example it has some utilities related to low level stuff such as a lowercase() function, and it also has some quite sophisticated utilities such as converting to/from different colour formats.
My question is, is it very naughty to have such a large utils.c with many different types of utilities in it? Should I break it up into many different kinds of utility files? Such as graphics_utils.c and so on What do you think?
Breaking them up into separate files based on categories (ie graphics, strings, etc.) will lead to better organization, making it easier to locate certain pieces of code, having smaller files to go through, instead of just one large file.
You want to break it up, not just for organizational reasons, but because you will have many other files that depend on this one. Because everything will depend on this file, it makes this one file difficult to change because it might cause widespread breakage.
http://ifacethoughts.net/2006/04/15/stable-dependencies-principle/
If it's just you that will EVER maintain the stuff, it's a matter of when the complexity gets to the point where you find yourself searching for things. That would be the time to refactor and reorganize (there's a cost to reorganize, just as there's a cost to not reorganize).
If it's POSSIBLE that anyone else will maintain a project that includes your utils, you have to consider THEIR pain point when deciding when to reorganize. Theirs is MUCH lower than yours.
I tend to break them up into various sub-utils as you say (graphics_utils) when it becomes appropriate.
Break it up. Stuff will be easier to find, easier to reuse, easier to refactor, easier to unit test. I recently needed to get a set of ISO-8601 date handling methods out of a ginormous Java utility class of static methods, and it was really hard to find the 5% of the code I needed.
It is definitely not kosher, because the next guy coming through your code won't know where to look for anything. Break it up by function, and your coworkers will thank you!
Another advantage that comes from breaking up the file into separates is that when you place it under source control, you can have finer grained control. This really is useful if you have bits that are tweaked/extended/specialised frequently, and other bits that are relatively stable.
Another point: You should organize your code, i. e. break it up in smaller modules and categorize it, because at some point in time you will end up writing a second and third function for the same thing, simply for the reason that you wont find that function that you knew it was there, but you don't remember it's name.
I've got a (rather large) project with such a module and there is programming logic for which there are up to 5-6 implementations (for the same thing).
Like everyone else I would break them up. But I tend to use Extension Methods now, so I would have one class (and one file) per class being extended (e.g. StringExtensions, SqlDataReaderExtensions, etc). I find this tends to break up the utility methods nicely.