How to be notified when CachedModeledFramework is initialized - apache-zookeeper

I am using Apache Curator's CachedModeledFramework to try to cache all of the child nodes in a path. I want to be notified when the cache is loaded. If children exist, I do get the NODE_ADDED events from the listener, but I can't find any way to get notified when it is fully cached, even if no children exist yet. I can't use readThrough or readThroughAsZNode because the ZPath is not resolved.
Also, the modeledClient.cached() line produces a "CuratorCache does not support custom ExecutorService" warning even though I am not passing in an executor (same warning shows up if I do pass an executor).
private static final ModelSpec<Monitor> monitorSpec = ModelSpec.builder(ZPath.parseWithIds("/monitors/{id}"), JacksonModelSerializer.build(Monitor.class)).build();
private CachedModeledFramework<Monitor> cached;
public void init() {
AsyncCuratorFramework async = AsyncCuratorFramework.wrap(CuratorMgr.getClient());
ModeledFramework<Monitor> modeledClient = ModeledFramework.wrap(async, monitorSpec);
cached = modeledClient.cached();
cached.start();
cached.listenable().addListener((type, path, stat, model) -> {
logger.info("LISTENER {} {}", type, path);
});
}
Edit
I found the answer. The ModeledCacheListener has an initialized method I can override.
cached.listenable().addListener(new ModeledCacheListener<Monitor>() {
#Override
public void accept(ModeledCacheListener.Type type, ZPath path, Stat stat, Monitor model) {
logger.info("LISTENER {} {}", type, path);
}
#Override
public void initialized() {
ModeledCacheListener.super.initialized();
logger.info("INITIALIZED");
}
});

Edited the initial post with the answer of overriding the initialized method of ModeledCacheListener

Related

How to add context to cache load() for Guava LoadingCache?

I want to add AWS XRay segment context to the cache loading mechanism, the problem is that the method load that we override to use LoadingCache from Guava, has fixed parameters so I cannot pass any XRay segment info.
I didn't try anything yet.
#AllArgsConstructor
public class InfoAsyncCacheLoader extends CacheLoader<String, String> {
#Override
public InfoModel load(String string) {
// TODO: create subsegment for ddb loading with context of parent segment passed in:
return item;
}

In a swift/firebase project, what causes an array to be readable when .observe is used but not when SingleEvent is used? [duplicate]

Whenever I use addListenerForSingleValueEvent with setPersistenceEnabled(true), I only manage to get a local offline copy of DataSnapshot and NOT the updated DataSnapshot from the server.
However, if I use addValueEventListener with setPersistenceEnabled(true), I can get the latest copy of DataSnapshot from the server.
Is this normal for addListenerForSingleValueEvent as it only searches DataSnapshot locally (offline) and removes its listener after successfully retrieving DataSnapshot ONCE (either offline or online)?
Update (2021): There is a new method call (get on Android and getData on iOS) that implement the behavior you'll like want: it first tries to get the latest value from the server, and only falls back to the cache when it can't reach the server. The recommendation to use persistent listeners still applies, but at least there's a cleaner option for getting data once even when you have local caching enabled.
How persistence works
The Firebase client keeps a copy of all data you're actively listening to in memory. Once the last listener disconnects, the data is flushed from memory.
If you enable disk persistence in a Firebase Android application with:
Firebase.getDefaultConfig().setPersistenceEnabled(true);
The Firebase client will keep a local copy (on disk) of all data that the app has recently listened to.
What happens when you attach a listener
Say you have the following ValueEventListener:
ValueEventListener listener = new ValueEventListener() {
#Override
public void onDataChange(DataSnapshot snapshot) {
System.out.println(snapshot.getValue());
}
#Override
public void onCancelled(FirebaseError firebaseError) {
// No-op
}
};
When you add a ValueEventListener to a location:
ref.addValueEventListener(listener);
// OR
ref.addListenerForSingleValueEvent(listener);
If the value of the location is in the local disk cache, the Firebase client will invoke onDataChange() immediately for that value from the local cache. If will then also initiate a check with the server, to ask for any updates to the value. It may subsequently invoke onDataChange() again if there has been a change of the data on the server since it was last added to the cache.
What happens when you use addListenerForSingleValueEvent
When you add a single value event listener to the same location:
ref.addListenerForSingleValueEvent(listener);
The Firebase client will (like in the previous situation) immediately invoke onDataChange() for the value from the local disk cache. It will not invoke the onDataChange() any more times, even if the value on the server turns out to be different. Do note that updated data still will be requested and returned on subsequent requests.
This was covered previously in How does Firebase sync work, with shared data?
Solution and workaround
The best solution is to use addValueEventListener(), instead of a single-value event listener. A regular value listener will get both the immediate local event and the potential update from the server.
A second solution is to use the new get method (introduced in early 2021), which doesn't have this problematic behavior. Note that this method always tries to first fetch the value from the server, so it will take longer to completely. If your value never changes, it might still be better to use addListenerForSingleValueEvent (but you probably wouldn't have ended up on this page in that case).
As a workaround you can also call keepSynced(true) on the locations where you use a single-value event listener. This ensures that the data is updated whenever it changes, which drastically improves the chance that your single-value event listener will see the current value.
So I have a working solution for this. All you have to do is use ValueEventListener and remove the listener after 0.5 seconds to make sure you've grabbed the updated data by then if needed. Realtime database has very good latency so this is safe. See safe code example below;
public class FirebaseController {
private DatabaseReference mRootRef;
private Handler mHandler = new Handler();
private FirebaseController() {
FirebaseDatabase.getInstance().setPersistenceEnabled(true);
mRootRef = FirebaseDatabase.getInstance().getReference();
}
public static FirebaseController getInstance() {
if (sInstance == null) {
sInstance = new FirebaseController();
}
return sInstance;
}
Then some method you'd have liked to use "addListenerForSingleEvent";
public void getTime(final OnTimeRetrievedListener listener) {
DatabaseReference ref = mRootRef.child("serverTime");
ref.addValueEventListener(new ValueEventListener() {
#Override
public void onDataChange(DataSnapshot dataSnapshot) {
if (listener != null) {
// This can be called twice if data changed on server - SO DEAL WITH IT!
listener.onTimeRetrieved(dataSnapshot.getValue(Long.class));
}
// This can be called twice if data changed on server - SO DEAL WITH IT!
removeListenerAfter2(ref, this);
}
#Override
public void onCancelled(DatabaseError databaseError) {
removeListenerAfter2(ref, this);
}
});
}
// ValueEventListener version workaround for addListenerForSingleEvent not working.
private void removeListenerAfter2(DatabaseReference ref, ValueEventListener listener) {
mHandler.postDelayed(new Runnable() {
#Override
public void run() {
HelperUtil.logE("removing listener", FirebaseController.class);
ref.removeEventListener(listener);
}
}, 500);
}
// ChildEventListener version workaround for addListenerForSingleEvent not working.
private void removeListenerAfter2(DatabaseReference ref, ChildEventListener listener) {
mHandler.postDelayed(new Runnable() {
#Override
public void run() {
HelperUtil.logE("removing listener", FirebaseController.class);
ref.removeEventListener(listener);
}
}, 500);
}
Even if they close the app before the handler is executed, it will be removed anyways.
Edit: this can be abstracted to keep track of added and removed listeners in a HashMap using reference path as key and datasnapshot as value. You can even wrap a fetchData method that has a boolean flag for "once" if this is true it would do this workaround to get data once, else it would continue as normal.
You're Welcome!
You can create transaction and abort it, then onComplete will be called when online (nline data) or offline (cached data)
I previously created function which worked only if database got connection lomng enough to do synch. I fixed issue by adding timeout. I will work on this and test if this works. Maybe in the future, when I get free time, I will create android lib and publish it, but by then it is the code in kotlin:
/**
* #param databaseReference reference to parent database node
* #param callback callback with mutable list which returns list of objects and boolean if data is from cache
* #param timeOutInMillis if not set it will wait all the time to get data online. If set - when timeout occurs it will send data from cache if exists
*/
fun readChildrenOnlineElseLocal(databaseReference: DatabaseReference, callback: ((mutableList: MutableList<#kotlin.UnsafeVariance T>, isDataFromCache: Boolean) -> Unit), timeOutInMillis: Long? = null) {
var countDownTimer: CountDownTimer? = null
val transactionHandlerAbort = object : Transaction.Handler { //for cache load
override fun onComplete(p0: DatabaseError?, p1: Boolean, data: DataSnapshot?) {
val listOfObjects = ArrayList<T>()
data?.let {
data.children.forEach {
val child = it.getValue(aClass)
child?.let {
listOfObjects.add(child)
}
}
}
callback.invoke(listOfObjects, true)
}
override fun doTransaction(p0: MutableData?): Transaction.Result {
return Transaction.abort()
}
}
val transactionHandlerSuccess = object : Transaction.Handler { //for online load
override fun onComplete(p0: DatabaseError?, p1: Boolean, data: DataSnapshot?) {
countDownTimer?.cancel()
val listOfObjects = ArrayList<T>()
data?.let {
data.children.forEach {
val child = it.getValue(aClass)
child?.let {
listOfObjects.add(child)
}
}
}
callback.invoke(listOfObjects, false)
}
override fun doTransaction(p0: MutableData?): Transaction.Result {
return Transaction.success(p0)
}
}
In the code if time out is set then I set up timer which will call transaction with abort. This transaction will be called even when offline and will provide online or cached data (in this function there is really high chance that this data is cached one).
Then I call transaction with success. OnComplete will be called ONLY if we got response from firebase database. We can now cancel timer (if not null) and send data to callback.
This implementation makes dev 99% sure that data is from cache or is online one.
If you want to make it faster for offline (to don't wait stupidly with timeout when obviously database is not connected) then check if database is connected before using function above:
DatabaseReference connectedRef = FirebaseDatabase.getInstance().getReference(".info/connected");
connectedRef.addValueEventListener(new ValueEventListener() {
#Override
public void onDataChange(DataSnapshot snapshot) {
boolean connected = snapshot.getValue(Boolean.class);
if (connected) {
System.out.println("connected");
} else {
System.out.println("not connected");
}
}
#Override
public void onCancelled(DatabaseError error) {
System.err.println("Listener was cancelled");
}
});
When workinkg with persistence enabled, I counted the times the listener received a call to onDataChange() and stoped to listen at 2 times. Worked for me, maybe helps:
private int timesRead;
private ValueEventListener listener;
private DatabaseReference ref;
private void readFB() {
timesRead = 0;
if (ref == null) {
ref = mFBDatabase.child("URL");
}
if (listener == null) {
listener = new ValueEventListener() {
#Override
public void onDataChange(DataSnapshot dataSnapshot) {
//process dataSnapshot
timesRead++;
if (timesRead == 2) {
ref.removeEventListener(listener);
}
}
#Override
public void onCancelled(DatabaseError databaseError) {
}
};
}
ref.removeEventListener(listener);
ref.addValueEventListener(listener);
}

What causes a cache issue that occurs with observeSingleEvent but not with .observe(DataEventType.value? [duplicate]

Whenever I use addListenerForSingleValueEvent with setPersistenceEnabled(true), I only manage to get a local offline copy of DataSnapshot and NOT the updated DataSnapshot from the server.
However, if I use addValueEventListener with setPersistenceEnabled(true), I can get the latest copy of DataSnapshot from the server.
Is this normal for addListenerForSingleValueEvent as it only searches DataSnapshot locally (offline) and removes its listener after successfully retrieving DataSnapshot ONCE (either offline or online)?
Update (2021): There is a new method call (get on Android and getData on iOS) that implement the behavior you'll like want: it first tries to get the latest value from the server, and only falls back to the cache when it can't reach the server. The recommendation to use persistent listeners still applies, but at least there's a cleaner option for getting data once even when you have local caching enabled.
How persistence works
The Firebase client keeps a copy of all data you're actively listening to in memory. Once the last listener disconnects, the data is flushed from memory.
If you enable disk persistence in a Firebase Android application with:
Firebase.getDefaultConfig().setPersistenceEnabled(true);
The Firebase client will keep a local copy (on disk) of all data that the app has recently listened to.
What happens when you attach a listener
Say you have the following ValueEventListener:
ValueEventListener listener = new ValueEventListener() {
#Override
public void onDataChange(DataSnapshot snapshot) {
System.out.println(snapshot.getValue());
}
#Override
public void onCancelled(FirebaseError firebaseError) {
// No-op
}
};
When you add a ValueEventListener to a location:
ref.addValueEventListener(listener);
// OR
ref.addListenerForSingleValueEvent(listener);
If the value of the location is in the local disk cache, the Firebase client will invoke onDataChange() immediately for that value from the local cache. If will then also initiate a check with the server, to ask for any updates to the value. It may subsequently invoke onDataChange() again if there has been a change of the data on the server since it was last added to the cache.
What happens when you use addListenerForSingleValueEvent
When you add a single value event listener to the same location:
ref.addListenerForSingleValueEvent(listener);
The Firebase client will (like in the previous situation) immediately invoke onDataChange() for the value from the local disk cache. It will not invoke the onDataChange() any more times, even if the value on the server turns out to be different. Do note that updated data still will be requested and returned on subsequent requests.
This was covered previously in How does Firebase sync work, with shared data?
Solution and workaround
The best solution is to use addValueEventListener(), instead of a single-value event listener. A regular value listener will get both the immediate local event and the potential update from the server.
A second solution is to use the new get method (introduced in early 2021), which doesn't have this problematic behavior. Note that this method always tries to first fetch the value from the server, so it will take longer to completely. If your value never changes, it might still be better to use addListenerForSingleValueEvent (but you probably wouldn't have ended up on this page in that case).
As a workaround you can also call keepSynced(true) on the locations where you use a single-value event listener. This ensures that the data is updated whenever it changes, which drastically improves the chance that your single-value event listener will see the current value.
So I have a working solution for this. All you have to do is use ValueEventListener and remove the listener after 0.5 seconds to make sure you've grabbed the updated data by then if needed. Realtime database has very good latency so this is safe. See safe code example below;
public class FirebaseController {
private DatabaseReference mRootRef;
private Handler mHandler = new Handler();
private FirebaseController() {
FirebaseDatabase.getInstance().setPersistenceEnabled(true);
mRootRef = FirebaseDatabase.getInstance().getReference();
}
public static FirebaseController getInstance() {
if (sInstance == null) {
sInstance = new FirebaseController();
}
return sInstance;
}
Then some method you'd have liked to use "addListenerForSingleEvent";
public void getTime(final OnTimeRetrievedListener listener) {
DatabaseReference ref = mRootRef.child("serverTime");
ref.addValueEventListener(new ValueEventListener() {
#Override
public void onDataChange(DataSnapshot dataSnapshot) {
if (listener != null) {
// This can be called twice if data changed on server - SO DEAL WITH IT!
listener.onTimeRetrieved(dataSnapshot.getValue(Long.class));
}
// This can be called twice if data changed on server - SO DEAL WITH IT!
removeListenerAfter2(ref, this);
}
#Override
public void onCancelled(DatabaseError databaseError) {
removeListenerAfter2(ref, this);
}
});
}
// ValueEventListener version workaround for addListenerForSingleEvent not working.
private void removeListenerAfter2(DatabaseReference ref, ValueEventListener listener) {
mHandler.postDelayed(new Runnable() {
#Override
public void run() {
HelperUtil.logE("removing listener", FirebaseController.class);
ref.removeEventListener(listener);
}
}, 500);
}
// ChildEventListener version workaround for addListenerForSingleEvent not working.
private void removeListenerAfter2(DatabaseReference ref, ChildEventListener listener) {
mHandler.postDelayed(new Runnable() {
#Override
public void run() {
HelperUtil.logE("removing listener", FirebaseController.class);
ref.removeEventListener(listener);
}
}, 500);
}
Even if they close the app before the handler is executed, it will be removed anyways.
Edit: this can be abstracted to keep track of added and removed listeners in a HashMap using reference path as key and datasnapshot as value. You can even wrap a fetchData method that has a boolean flag for "once" if this is true it would do this workaround to get data once, else it would continue as normal.
You're Welcome!
You can create transaction and abort it, then onComplete will be called when online (nline data) or offline (cached data)
I previously created function which worked only if database got connection lomng enough to do synch. I fixed issue by adding timeout. I will work on this and test if this works. Maybe in the future, when I get free time, I will create android lib and publish it, but by then it is the code in kotlin:
/**
* #param databaseReference reference to parent database node
* #param callback callback with mutable list which returns list of objects and boolean if data is from cache
* #param timeOutInMillis if not set it will wait all the time to get data online. If set - when timeout occurs it will send data from cache if exists
*/
fun readChildrenOnlineElseLocal(databaseReference: DatabaseReference, callback: ((mutableList: MutableList<#kotlin.UnsafeVariance T>, isDataFromCache: Boolean) -> Unit), timeOutInMillis: Long? = null) {
var countDownTimer: CountDownTimer? = null
val transactionHandlerAbort = object : Transaction.Handler { //for cache load
override fun onComplete(p0: DatabaseError?, p1: Boolean, data: DataSnapshot?) {
val listOfObjects = ArrayList<T>()
data?.let {
data.children.forEach {
val child = it.getValue(aClass)
child?.let {
listOfObjects.add(child)
}
}
}
callback.invoke(listOfObjects, true)
}
override fun doTransaction(p0: MutableData?): Transaction.Result {
return Transaction.abort()
}
}
val transactionHandlerSuccess = object : Transaction.Handler { //for online load
override fun onComplete(p0: DatabaseError?, p1: Boolean, data: DataSnapshot?) {
countDownTimer?.cancel()
val listOfObjects = ArrayList<T>()
data?.let {
data.children.forEach {
val child = it.getValue(aClass)
child?.let {
listOfObjects.add(child)
}
}
}
callback.invoke(listOfObjects, false)
}
override fun doTransaction(p0: MutableData?): Transaction.Result {
return Transaction.success(p0)
}
}
In the code if time out is set then I set up timer which will call transaction with abort. This transaction will be called even when offline and will provide online or cached data (in this function there is really high chance that this data is cached one).
Then I call transaction with success. OnComplete will be called ONLY if we got response from firebase database. We can now cancel timer (if not null) and send data to callback.
This implementation makes dev 99% sure that data is from cache or is online one.
If you want to make it faster for offline (to don't wait stupidly with timeout when obviously database is not connected) then check if database is connected before using function above:
DatabaseReference connectedRef = FirebaseDatabase.getInstance().getReference(".info/connected");
connectedRef.addValueEventListener(new ValueEventListener() {
#Override
public void onDataChange(DataSnapshot snapshot) {
boolean connected = snapshot.getValue(Boolean.class);
if (connected) {
System.out.println("connected");
} else {
System.out.println("not connected");
}
}
#Override
public void onCancelled(DatabaseError error) {
System.err.println("Listener was cancelled");
}
});
When workinkg with persistence enabled, I counted the times the listener received a call to onDataChange() and stoped to listen at 2 times. Worked for me, maybe helps:
private int timesRead;
private ValueEventListener listener;
private DatabaseReference ref;
private void readFB() {
timesRead = 0;
if (ref == null) {
ref = mFBDatabase.child("URL");
}
if (listener == null) {
listener = new ValueEventListener() {
#Override
public void onDataChange(DataSnapshot dataSnapshot) {
//process dataSnapshot
timesRead++;
if (timesRead == 2) {
ref.removeEventListener(listener);
}
}
#Override
public void onCancelled(DatabaseError databaseError) {
}
};
}
ref.removeEventListener(listener);
ref.addValueEventListener(listener);
}

Using HeaderResponseContainer: No FilteringHeaderResponse is present in the request cycle

I'm trying to add a custom HeaderResponseContainer in my wicket application. The tutorial looks quite simple (see Positioning of contributions), but when I add these lines and run the application I alwas get an IllegalStateException:
java.lang.IllegalStateException: No FilteringHeaderResponse is present in the request cycle. This may mean that you have not decorated the header response with a FilteringHeaderResponse. Simply calling the FilteringHeaderResponse constructor sets itself on the request cycle
at org.apache.wicket.markup.head.filter.FilteringHeaderResponse.get(FilteringHeaderResponse.java:165)
at org.apache.wicket.markup.head.filter.HeaderResponseContainer.onComponentTagBody(HeaderResponseContainer.java:64)
at org.apache.wicket.markup.html.panel.DefaultMarkupSourcingStrategy.onComponentTagBody(DefaultMarkupSourcingStrategy.java:71)
...
Yes, I already saw the note about FilteringHeaderResponse. But I am not sure where I should call the constructor. I already tried to add it in renderHead before calling response.render but I still get the same exception:
public void renderHead(IHeaderResponse response) {
super.renderHead(response);
FilteringHeaderResponse resp = new FilteringHeaderResponse(response);
resp.render(new FilteredHeaderItem(..., "myKey"));
}
You can create a decorator that wraps responses in a FilteringHeaderResponse:
public final class FilteringHeaderResponseDecorator implements IHeaderResponseDecorator {
#Override
public IHeaderResponse decorate(IHeaderResponse response) {
return new FilteringHeaderResponse(response);
}
}
And that set it during application initialization:
Override
public void init() {
super.init();
setHeaderResponseDecorator(new FilteringHeaderResponseDecorator());
}
I just ran into this same problem and found that the Wicket In Action tutorial leaves out the part about setting up a custom IHeaderResponseDecorator in your main Wicket Application init. The Wicket guide has a more thorough example:
Apache Wicket User Guide - Put JavaScript inside page body
You need something like this in your wicket Application:
#Override
public void init()
{
setHeaderResponseDecorator(new JavaScriptToBucketResponseDecorator("myKey"));
}
/**
* Decorates an original IHeaderResponse and renders all javascript items
* (JavaScriptHeaderItem), to a specific container in the page.
*/
static class JavaScriptToBucketResponseDecorator implements IHeaderResponseDecorator
{
private String bucketName;
public JavaScriptToBucketResponseDecorator(String bucketName) {
this.bucketName = bucketName;
}
#Override
public IHeaderResponse decorate(IHeaderResponse response) {
return new JavaScriptFilteredIntoFooterHeaderResponse(response, bucketName);
}
}

class member returns null after osgi bind method

My problem is that in the main class I have some osgi references that work just fine when the class is call. But after that all the references became null. When I close the main windows and call shutdown method, the hubService reference returns null. What do I do wrong here?
private void shutdown() {
if(hubService == null) {
throw new NullPointerException();
}
hubService.shutdownHub(); // why is hubService null?
}
// bind hub service
public synchronized void setHubService(IHubService service) {
hubService = service;
try {
hubService.startHub(PORT, authenticationHandler);
} catch (Exception e) {
JOptionPane.showMessageDialog(mainFrame, e.toString(), "Server", JOptionPane.ERROR_MESSAGE);
System.exit(0);
}
}
// remove hub service
public synchronized void unsetHubService(IHubService service) {
hubService.shutdownHub();
hubService = null;
}
If a field can be read and written by multiple threads, you must protect access to read as well as write. Your first method, shutdown, does not protect the read of hubService so that the value of hubService can change between the first read and the second read. You don't show the declaration of the hubService field. You could make it volatile or only read when synchronized (on the same object used to synchronized when writing the field). Then your shutdown implementation could look like:
private volatile IHubService hubService;
private void shutdown() {
IHubService service = hubService; // make a copy of the field in a local variable
if (service != null) // use local var from now on since the field could have changed
service.shutdownHub();
}
I assume your shutdown method is the DS deactivate method? If so, why do you shutdown in the unset method as well in the shutdown method?
Overall the design does not seem very sound. The IHubService is used as a factory and should return some object that is then closed in the deactivate method. You made the IHubService effectively a singleton. Since it must come from another bundle, it should handle its life cycle itself.
Since you also do not use annotations, it is not clear if your set/unset methods are static/dynamic and/or single/multiple. The following code should not have your problems (exammple code with bnd annotations):
#Component public class MyImpl {
IHubService hub;
#Activate
void activate() {
hubService.startHub(PORT, authenticationHandler);
}
#DeActivate
void deactivate() {
hubService.shutdown();
}
#Reference
void setHub(IHubService hub) { this.hub = hub; }
}