I'm new to Scala, and I'm running into this strange situation.
def bar[A, B](implicit foo: A => B): B = {
// do something
foo
}
And then I got error like
require B but found A => B
How should I get B form A => B
Here's the reason why I did this, I have two functions:
def funcA: String = {
def getStrA: String = "A"
// then there's the same operation in both functions
Try{ } match {
case Success(_) => getStrA
case Failure(_) => // exactlly same error handler in both function
}
}
def funcB: Int = {
def doSomething(x: Int): Int = {
// do something
x / 1
}
val x = 1
Try{ } match {
case Success(_) => doSomething(1)
case Failure(_) => // exactlly same error handler in both function
}
}
Here's what I want to achieve
def funcA: String = {
implicit def getStrA: String = "A"
bar
}
def funcB: Int = {
val x = 1
implicit def doSomething(x: Int): Int = {
// do something
x / 1
}
bar
}
def bar[A, B](implicit foo: A => B): B = {
Try{ } match {
case Success(_) => foo
case Failure(_) => // exactlly same error handler in both function
}
}
You have a conversion from A to B. You need to return B. The only way to do this is to pass A into the function. This signature has an implied assumption that you have some valid A value (most likely hardcoded) that you will always use here.
def bar[A, B](implicit foo: A => B): B = {
val a: A = ... // hmm...
foo(a)
}
Considering, that A is parametric, then you are either missing some information, or this A is impossible to create (it cannot be null because not all types can take null as a value), so you might need to throw exception in such case. Probably you are either missing some A provider or you should always fail this operation.
UPDATE:
There is no need for using implicits at all in your code:
def bar[B](f: onSuccess: A => B) =
Try{ some operations } match {
case Success(value) => onSuccess(value)
case Failure(_) => // error handler
}
def funcA = bar(_ => "A")
def funcB = bar(_ => 1)
Related
I'm not sure whether I chose the right title for my question..
I'm interested as to why the collection in the companion object is defined. Am I mistaken that this collection will have only one f in it? What I am seeing is a collection with exactly one element.
Here's the Future I'm dealing with:
trait Future[+T] { self =>
def onComplete(callback: Try[T] => Unit): Unit
def map[U](f: T => U) = new Future[U] {
def onComplete(callback: Try[U] => Unit) =
self onComplete (t => callback(t.map(f)))
}
def flatMap[U](f: T => Future[U]) = new Future[U] {
def onComplete(callback: Try[U] => Unit) =
self onComplete { _.map(f) match {
case Success(fu) => fu.onComplete(callback)
case Failure(e) => callback(Failure(e))
} }
}
def filter(p: T => Boolean) =
map { t => if (!p(t)) throw new NoSuchElementException; t }
}
Its companion object:
object Future {
def apply[T](f: => T) = {
val handlers = collection.mutable.Buffer.empty[Try[T] => Unit]
var result: Option[Try[T]] = None
val runnable = new Runnable {
def run = {
val r = Try(f)
handlers.synchronized {
result = Some(r)
handlers.foreach(_(r))
}
}
}
(new Thread(runnable)).start()
new Future[T] {
def onComplete(f: Try[T] => Unit) = handlers.synchronized {
result match {
case None => handlers += f
case Some(r) => f(r)
}
}
}
}
}
In my head I was imagining something like the following instead of the above companion object (notice how I replaced the above val handlers .. with var handler ..):
object Future {
def apply[T](f: => T) = {
var handler: Option[Try[T] => Unit] = None
var result: Option[Try[T]] = None
val runnable = new Runnable {
val execute_when_ready: Try[T] => Unit = r => handler match {
case None => execute_when_ready(r)
case Some(f) => f(r)
}
def run = {
val r = Try(f)
handler.synchronized {
result = Some(r)
execute_when_ready(r)
}
}
}
(new Thread(runnable)).start()
new Future[T] {
def onComplete(f: Try[T] => Unit) = handler.synchronized {
result match {
case None => handler = Some(f)
case Some(r) => f(r)
}
}
}
}
}
So why does the function execute_when_ready leads to stackoverflow, but that's not the case with handlers.foreach? what is the collection is offering me which I can't do without it? And is it possible to replace the collection with something else in the companion object?
The collection is not in the companion object, it is in the apply method, so there is a new instance for each Future. It is there because there can be multiple pending onComplete handlers on the same Future.
Your implementation only allows a single handler and silently removes any existing handler in onComplete which is a bad idea because the caller has no idea if a previous function has added an onComplete handler or not.
As noted in the comments, the stack overflow is because execute_when_ready calls itself if handler is None with no mechanism to stop the recursion.
I'm having an example for a logger wrapped with State monad:
val logger = Logger(LoggerFactory.getLogger(this.getClass))
def logState[A](s:IO[Unit], a:A): State[List[IO[Unit]], A] = State[List[IO[Unit]], A]{ logs =>
(logs :+ s, a)
}
type Valid[A] = Exception \/ A
def i2f(i:Int): Valid[BigDecimal] = if (i >= 0) BigDecimal(i).right else (new RuntimeException("Input is smaller then 0")).left
def f2s(f: Valid[BigDecimal]): Valid[String] = f match {
case \/-(f1) => f1.toString.right
case -\/(e) => e.left
}
val comp: Int => State[List[IO[Unit]], Valid[String]] = i => for{
f <- logState(IO{ logger.info(s" => i2f($i)")}, i2f(i))
s <- logState(IO{ logger.info(s" => f2s($f)")}, f2s(f))
} yield s
comp(2)(List.empty) match {
case (logs, a) => {
logs.foreach(_.unsafePerformIO())
a match {
case \/-(s) => println(s"Finally we get: ${s}")
case -\/(e) => println(e.getMessage)
}
}
}
Which works well, but I'm not satisfy with as before I adding State monad, the code was much more clear which was:
type Valid[A] = Exception \/ A
def i2f: Kleisli[Valid, Int, BigDecimal] = Kleisli { i =>
if (i >= 0) BigDecimal(i).right else (new RuntimeException("Input is smaller then 0")).left
}
def f2s: Kleisli[Valid, BigDecimal, String] = Kleisli { f =>
f.toString().right
}
def comp: Kleisli[Valid, Int, String] = i2f andThen f2s
comp(2) match {
case \/-(s) => println(s"Finally we get: ${s}")
case -\/(e) => println(e.getMessage)
}
I'm wondering how let State to work with Kleisli? so that all monads will be working together likes one?
And not the logger will works out of i2f and f2s functions, but also are able to work inside?
All right, got some progress, now the code been:
implicit val ec = scala.concurrent.ExecutionContext.global
type Valid[A] = Exception \/ A
type Report = List[IO[Unit]]
type StateResultT[A] = StateT[Future, Report, A]
implicit val StateResultBind: Bind[StateResultT] = new Bind[StateResultT] {
override def bind[A, B](fa: StateResultT[A])(f: A => StateResultT[B]): StateResultT[B] = fa flatMap f
override def map[A, B](fa: StateResultT[A])(f: A => B): StateResultT[B] = fa map f
}
def i2f: Kleisli[StateResultT, Int, Valid[BigDecimal]] = Kleisli{ i =>
StateT { logs =>
Future (
logs :+ IO(logger.debug("i2f")),
if (i >= 0) BigDecimal(i).right else (new RuntimeException("Input is smaller then 0")).left
)
}
}
def f2s: Kleisli[StateResultT, Valid[BigDecimal], (Report, Valid[String])] = Kleisli { s =>
StateT { logs =>
Future (
logs :+ IO(logger.debug("f2s")),
s match{
case \/-(f) => f.toString.right
case -\/(e) => e.left
}
)
}
}
def comp: Kleisli[StateResultT, Int, Valid[String]] = i2f andThen f2s
Await.result(comp(-2)(List.empty), Duration.Inf) match {
case (logs, a) => {
logs.foreach(_.unsafePerformIO())
a match {
case \/-(s) => println(s"Finally we get: ${s}")
case -\/(e) => println(e.getMessage)
}
}
}
def myMethod(myType: String) :Future[Future[Either[List[MyError], MyClass]]] {
for {
first <- runWithSeq(firstSource)
}
yield {
runWithSeq(secondSource)
.map {s ->
val mine = MyClass(s.head, lars)
val errors = myType match {
case "all" => Something.someMethod(mine)
}
(s, errors)
}
.map { x =>
x._2.leftMap(xs => {
addInfo(x._1.head, xs.toList)
}).toEither
}
}
}
for {
myStuff <- myMethod("something")
} yield {
myStuff.collect {
case(Left(errors), rowNumber) =>
MyCaseClass(errors, None) //compilation error here
}
}
I get compilation error on MyCaseClass that expected: List[MyError], found: Any
The signature of MyCaseClass is:
case class MyCaseClass(myErrors: List[ValidationError])
How can I fix this such that I can correctly call MyCaseClass inside the yield?
Your code example doesn't make much sense, and doesn't compile, but if runWithSeq() returns a Future then you should be able to eliminate the double Future return type like so.
for {
_ <- runWithSeq(firstSource)
scnd <- runWithSeq(secondSource)
} yield { ...
Your example is pretty hard to paste and fix
Abstact example for this
Class C may be whatever you want
def test(testval: Int)(implicit ec: ExecutionContext): Future[Future[Either[String, Int]]] = {
Future(Future{
if (testval % 2 == 0) Right(testval) else Left("Smth wrong")
})
}
implicit class FutureEitherExt[A, B](ft: Future[Either[A, B]]) {
def EitherMatch[C](f1: A => C, f2: B => C)(implicit ec: ExecutionContext): Future[C] = {
ft.map {
case Left(value) => f1(value)
case Right(value) => f2(value)
}
}
}
val fl: Future[Either[String, Int]] = test(5).flatten
val result: Future[String] = fl.EitherMatch(identity, _.toString)
In Scala we have a by-name-parameters where we can write
def foo[T](f: => T):T = {
f // invokes f
}
// use as:
foo(println("hello"))
I now want to do the same with an array of methods, that is I want to use them as:
def foo[T](f:Array[ => T]):T = { // does not work
f(0) // invokes f(0) // does not work
}
foo(println("hi"), println("hello")) // does not work
Is there any way to do what I want? The best I have come up with is:
def foo[T](f:() => T *):T = {
f(0)() // invokes f(0)
}
// use as:
foo(() => println("hi"), () => println("hello"))
or
def foo[T](f:Array[() => T]):T = {
f(0)() // invokes f(0)
}
// use as:
foo(Array(() => println("hi"), () => println("hello")))
EDIT: The proposed SIP-24 is not very useful as pointed out by Seth Tisue in a comment to this answer.
An example where this will be problematic is the following code of a utility function trycatch:
type unitToT[T] = ()=>T
def trycatch[T](list:unitToT[T] *):T = list.size match {
case i if i > 1 =>
try list.head()
catch { case t:Any => trycatch(list.tail: _*) }
case 1 => list(0)()
case _ => throw new Exception("call list must be non-empty")
}
Here trycatch takes a list of methods of type ()=>T and applies each element successively until it succeeds or the end is reached.
Now suppose I have two methods:
def getYahooRate(currencyA:String, currencyB:String):Double = ???
and
def getGoogleRate(currencyA:String, currencyB:String):Double = ???
that convert one unit of currencyA to currencyB and output Double.
I use trycatch as:
val usdEuroRate = trycatch(() => getYahooRate("USD", "EUR"),
() => getGoogleRate("USD", "EUR"))
I would have preferred:
val usdEuroRate = trycatch(getYahooRate("USD", "EUR"),
getGoogleRate("USD", "EUR")) // does not work
In the example above, I would like getGoogleRate("USD", "EUR") to be invoked only if getYahooRate("USD", "EUR") throws an exception. This is not the intended behavior of SIP-24.
Here is a solution, although with a few restrictions compared to direct call-by-name:
import scala.util.control.NonFatal
object Main extends App {
implicit class Attempt[+A](f: => A) {
def apply(): A = f
}
def tryCatch[T](attempts: Attempt[T]*): T = attempts.toList match {
case a :: b :: rest =>
try a()
catch {
case NonFatal(e) =>
tryCatch(b :: rest: _*)
}
case a :: Nil =>
a()
case Nil => throw new Exception("call list must be non-empty")
}
def a = println("Hi")
def b: Unit = sys.error("one")
def c = println("bye")
tryCatch(a, b, c)
def d: Int = sys.error("two")
def e = { println("here"); 45 }
def f = println("not here")
val result = tryCatch(d, e, f)
println("Result is " + result)
}
The restrictions are:
Using a block as an argument won't work; only the last expression of the block will be wrapped in an Attempt.
If the expression is of type Nothing (e.g., if b and d weren't annotated), the conversion to Attempt is not inserted since Nothing is a subtype of every type, including Attempt. Presumably the same would apply for an expression of type Null.
As of Scala 2.11.7, the answer is no. However, there is SIP-24, so in some future version your f: => T* version may be possible.
I'm trying to implement a container for a match (like in sports) result so that I can create matches between the winners of other matches. This concept is close to what a future monads is as it contains a to be defined value, and also close to a state monad as it hides state change. Being mostly a begginer on the topic I have implemented an initial version in scala that is surely improvable. I added a get method that I'm not sure was a good idea, and so far the only way to create a value would be Unknown(null) which is not as elegant as I'd hoped. What do you think I could do to improve this design?
case class Unknown[T](t : T) {
private var value : Option[T] = Option(t)
private var applicatives: List[T => Unit] = Nil
def set(t: T) {
if (known) {
value = Option(t)
applicatives.foreach(f => f(t))
applicatives = Nil
} else {
throw new IllegalStateException
}
}
def get : T = value.get
def apply(f: T => Unit) = value match {
case Some(x) => f(x);
case None => applicatives ::= f
}
def known = value == None
}
UPDATE: a usage example of the current implementation follows
case class Match(val home: Unknown[Team], val visit: Unknown[Team], val result: Unknown[(Int, Int)]) {
val winner: Unknown[Team] = Unknown(null)
val loser: Unknown[Team] = Unknown(null)
result.apply(result => {
if (result._1 > result._2) {
home.apply(t => winner.set(t))
visit.apply(t => loser.set(t))
} else {
home.apply(t => loser.set(t))
visit.apply(t => winner.set(t))
}
})
}
And a test snippet:
val definedUnplayedMatch = Match(Unknown(Team("A")), Unknown(Team("B")), Unknown(null));
val definedPlayedMatch = Match(Unknown(Team("D")), Unknown(Team("E")), Unknown((1,0)));
val undefinedUnplayedMatch = Match(Unknown(null), Unknown(null), Unknown(null));
definedUnplayedMatch.winner.apply(undefinedUnplayedMatch.home.set(_))
definedPlayedMatch.winner.apply(undefinedUnplayedMatch.visit.set(_))
undefinedUnplayedMatch.result.set((3,1))
definedUnplayedMatch.result.set((2,4))
undefinedUnplayedMatch.winner.get must be equalTo(Team("B"));
undefinedUnplayedMatch.loser.get must be equalTo(Team("D"));
UPDATE - CURRENT IDEA : I haven't had much time to work on this because my laptop broke down, but I though it would be useful to write the monad I have so far for those who are interested:
sealed abstract class Determine[+A] {
def map[B](f: A => B): Determine[B]
def flatMap[B](f: A => Determine[B]): Determine[B]
def filter(p: A => Boolean): Determine[A]
def foreach(b: A => Unit): Unit
}
final case class Known[+A](value: A) extends Determine[A] {
def map[B](f: A => B): Determine[B] = Known(f(value))
def flatMap[B](f: A => Determine[B]): Determine[B] = f(value)
def filter(p: A => Boolean): Determine[A] = if (p(value)) this else Unknown
def foreach(b: A => Unit): Unit = b(value)
}
final case class TBD[A](definer: () => A) extends Determine[A] {
private var value: A = _
def map[B](f: A => B): Determine[B] = {
def newDefiner(): B = {
f(cachedDefiner())
}
TBD[B](newDefiner)
}
def flatMap[B](f: A => Determine[B]): Determine[B] = {
f(cachedDefiner())
}
def filter(p: A => Boolean): Determine[A] = {
if (p(cachedDefiner()))
this
else
Unknown
}
def foreach(b: A => Unit): Unit = {
b(cachedDefiner())
}
private def cachedDefiner(): A = {
if (value == null)
value = definer()
value
}
}
case object Unknown extends Determine[Nothing] {
def map[B](f: Nothing => B): Determine[B] = this
def flatMap[B](f: Nothing => Determine[B]): Determine[B] = this
def filter(p: Nothing => Boolean): Determine[Nothing] = this
def foreach(b: Nothing => Unit): Unit = {}
}
I got rid of the set & get and now the TBD class receives instead a function that will define provide the value or null if still undefined. This idea works great for the map method, but the rest of the methods have subtle bugs.
For a simple approach, you don't need monads, with partial application is enough:
//some utilities
type Score=(Int,Int)
case class MatchResult[Team](winner:Team,loser:Team)
//assume no ties
def playMatch[Team](home:Team,away:Team)(score:Score)=
if (score._1>score._2) MatchResult(home,away)
else MatchResult(away,home)
//defined played match
val dpm= playMatch("D","E")(1,0)
//defined unplayed match, we'll apply the score later
val dum= playMatch("A","B")_
// a function that takes the dum score and applies it
// to get a defined played match from an undefined one
// still is a partial application of match because we don't have the final result yet
val uumWinner= { score:Score => playMatch (dpm.winner,dum(score).winner) _ }
val uumLoser= { score:Score => playMatch (dpm.loser,dum(score).loser) _}
//apply the scores
uumWinner (2,4)(3,1)
uumLoser (2,4)(0,1)
//scala> uumWinner (2,4)(3,1)
//res6: MatchResult[java.lang.String] = MatchResult(D,B)
//scala> uumLoser (2,4)(0,1)
//res7: MatchResult[java.lang.String] = MatchResult(A,E)
This is a starting point, I'm pretty sure it can be further refined. Maybe there we'll find the elusive monad. But I think an applicative functor will be enough.
I'll give another pass later...