Simulink state-space block giving only one output in MIMO model - matlab

I have state-space model where:
A is 4x4 matrix, B is 4x1 matrix, C is 1x4 matrix.
I want that model to be simulated in Simulink, simple right? So I made a model as shown in this image.
Why i am getting only one output? Shouldnt I get output of matrix 4x1 therefore four outputs?

Analyzing the state space model consisting of system of matrix equations:
dx = A*x + B*u
y = C*x + D*u
We can see that size of y (the output) is determined by the number of rows in C and D matrices (number of rows in both matrices must be equal).
In your case size(C) = [1,4], that is the number of rows is 1 so you have only one output.
If you want to extract the whole state you can set C = eye(4) and modify D so that size(D) = [4,1] (as you have 4 outputs now and 1 input).

Related

Matrix Multiplication Issue - Matlab

In an attempt to create my own covariance function in MatLab I need to perform matrix multiplication on a row to create a matrix.
Given a matrix D where
D = [-2.2769 0.8746
0.6690 -0.4720
-1.0030 -0.9188
2.6111 0.5162]
Now for each row I need manufacture a matrix. For example the first row R = [-2.2770, 0.8746] I would want the matrix M to be returned where M = [5.1847, -1.9915; -1.9915, 0.7649].
Below is what I have written so far. I am asking for some advice to explain how to use matrix multiplication on a rows to produce matrices?
% Find matrices using matrix multiplication
for i=1:size(D, 1)
P1 = (D(i,:))
P2 = transpose(P1)
M = P1*P2
end
You are trying to compute the outer product of each row with itself stored as individual slices in a 3D matrix.
Your code almost works. What you're doing instead is computing the inner product or the dot product of each row with itself. As such it'll give you a single number instead of a matrix. You need to change the transpose operation so that it's done on P1 not P2 and P2 will now simply be P1. Also you are overwriting the matrix M at each iteration. I'm assuming you'd like to store these as individual slices in a 3D matrix. To do this, allocate a 3D matrix where each 2D slice has an equal number of rows and columns which is the number of columns in D while the total number of slices is equal to the total number of rows in D. Then just index into each slice and place the result accordingly:
M = zeros(size(D,2), size(D,2), size(D,1));
% Find matrices using matrix multiplication
for ii=1:size(D, 1)
P = D(ii,:);
M(:,:,ii) = P.'*P;
end
We get:
>> M
M(:,:,1) =
5.18427361 -1.99137674
-1.99137674 0.76492516
M(:,:,2) =
0.447561 -0.315768
-0.315768 0.222784
M(:,:,3) =
1.006009 0.9215564
0.9215564 0.84419344
M(:,:,4) =
6.81784321 1.34784982
1.34784982 0.26646244
Depending on your taste, I would recommend using bsxfun to help you perform the same operation but perhaps doing it faster:
M = bsxfun(#times, permute(D, [2 3 1]), permute(D, [3 2 1]));
In fact, this solution is related to a similar question I asked in the past: Efficiently compute a 3D matrix of outer products - MATLAB. The only difference is that the question wanted to find the outer product of columns instead of the rows.
The way the code works is that we shift the dimensions with permute of D so that we get two matrices of the sizes 2 x 1 x 4 and 1 x 2 x 4. By performing bsxfun and specifying the times function, this allows you to efficiently compute the matrix of outer products per slice simultaneously.

Matlab: how to run a For loop with multiple outputs?

So my question refers to the regress() function in matlab. Click here for the Matlab documentation
If I want to run multiple regressions using this function and output both the coefficients and the confidence intervals, what's the best way to do this in a For loop?
Matlab's own syntax for this is [b,bint] = regress(y,X). But when I try to implement this in a for loop it tells me that the dimension mismatch. My code is the following:
for i=1:6
[a, b]=regress(Dataset(:,i),capm_factors);
capm_coefs(i,:)=a;
capm_ci(i,:)=b;
end
Please help, thanks!
regress outputs a column vector of coefficients that minimize the least squared error between your input data (capm_factors) and your predicted values (Dataset(:,i)). However, in your for loop, you are assuming that a and b are row vectors.
Also, the first output of regress is the solution to your system, but the second output contains a matrix of confidence values where the first column denotes the lower end of the confidence interval for each variable and the second column denotes the upper end of the confidence interval.
Specifically, your input capm_factors should be a M x N matrix where M is the total number of input samples and N is the total number of features. In your code, a would thus give you a N x 1 vector and b would give you a N x 2 matrix.
If you'd like use a loop, make sure capm_coefs is a N x l matrix where l is the total number of times you want to loop and capm_ci should either be a N x 2 x l 3D matrix or perhaps a l element cell array. Either way is acceptable.... but I'll show you how to do both.
Something like this comes to mind:
Confidences as a 3D matrix
l = 6; %// Define # of trials
[M,N] = size(capm_factors); %// Get dimensions of data
capm_coefs = zeros(N, l);
capm_ci = zeros(N, 2, l);
for ii = 1 : l
[a,b] = regress(Dataset(:,i), capm_factors);
capm_coefs(:,ii) = a;
capm_ci(:,:,ii) = b;
end
You'd then access the coefficients for a trial via capm_coefs(:,ii) where ii is the iteration you want. Similarly, the confidence matrix can be accessed via capm_ci(:,:,ii)
Confidences as a cell array
l = 6; %// Define # of trials
[M,N] = size(capm_factors); %// Get dimensions of data
capm_coefs = zeros(N, l);
capm_ci = cell(l); %// Cell array declaration
for ii = 1 : l
[a,b] = regress(Dataset(:,i), capm_factors);
capm_coefs(:,ii) = a;
capm_ci{ii} = b; %// Assign confidences to cell array
end
Like above, you'd access the coefficients for a trial via capm_coefs(:,ii) where ii is the iteration you want. However, the confidence matrix can be accessed via capm_ci{ii} as we are now dealing with cell arrays.

Convolution of multiple 1D signals in a 2D matrix with multiple 1D kernels in a 2D matrix

I have a randomly defined H matrix of size 600 x 10. Each element in this matrix H can be represented as H(k,t). I obtained a speech spectrogram S which is 600 x 597. I obtained it using Mel features, so it should be 40 x 611 but then I used a frame stacking concept in which I stacked 15 frames together. Therefore it gave me (40x15) x (611-15+1) which is 600 x 597.
Now I want to obtain an output matrix Y which is given by the equation based on convolution Y(k,t) = ∑ H(k,τ)S(k,t-τ). The sum goes from τ=0 to τ=Lh-1. Lh in this case would be 597.
I don't know how to obtain Y. Also, my doubt is the indexing into both H and S when computing the convolution. Specifically, for Y(1,1), we have:
Y(1,1) = H(1,0)S(1,1) + H(1,1)S(1,0) + H(1,2)S(1,-1) + H(1,3)S(1,-2) + ...
Now, there is no such thing as negative indices in MATLAB - for example, S(1,-1) S(1,-2) and so on. So, what type of convolution should I use to obtain Y? I tried using conv2 or fftfilt but I think that will not give me Y because Y must also be the size of S.
That's very easy. That's a convolution on a 2D signal only being applied to 1 dimension. If we assume that the variable k is used to access the rows and t is used to access the columns, you can consider each row of H and S as separate signals where each row of S is a 1D signal and each row of H is a convolution kernel.
There are two ways you can approach this problem.
Time domain
If you want to stick with time domain, the easiest thing would be to loop over each row of the output, find the convolution of each pair of rows of S and H and store the output in the corresponding output row. From what I can tell, there is no utility that can convolve in one dimension only given an N-D signal.... unless you go into frequency domain stuff, but let's leave that for later.
Something like:
Y = zeros(size(S));
for idx = 1 : size(Y,1)
Y(idx,:) = conv(S(idx,:), H(idx,:), 'same');
end
For each row of the output, we perform a row-wise convolution with a row of S and a row of H. I use the 'same' flag because the output should be the same size as a row of S... which is the bigger row.
Frequency domain
You can also perform the same computation in frequency domain. If you know anything about the properties of convolution and the Fourier Transform, you know that convolution in time domain is multiplication in the frequency domain. You take the Fourier Transform of both signals, multiply them element-wise, then take the Inverse Fourier Transform back.
However, you need to keep the following intricacies in mind:
Performing a full convolution means that the final length of the output signal is length(A)+length(B)-1, assuming A and B are 1D signals. Therefore, you need to make sure that both A and B are zero-padded so that they both match the same size. The reason why you make sure that the signals are the same size is to allow for the multiplication operation to work.
Once you multiply the signals in the frequency domain then take the inverse, you will see that each row of Y is the full length of the convolution. To ensure that you get an output that is the same size as the input, you need to trim off some points at the beginning and at the end. Specifically, since each kernel / column length of H is 10, you would have to remove the first 5 and last 5 points of each signal in the output to match what you get in the for loop code.
Usually after the inverse Fourier Transform, there are some residual complex coefficients due to the nature of the FFT algorithm. It's good practice to use real to remove the complex valued parts of the results.
Putting all of this theory together, this is what the code would look like:
%// Define zero-padded H and S matrices
%// Rows are the same, but columns must be padded to match point #1
H2 = zeros(size(H,1), size(H,2)+size(S,2)-1);
S2 = zeros(size(S,1), size(H,2)+size(S,2)-1);
%// Place H and S at the beginning and leave the rest of the columns zero
H2(:,1:size(H,2)) = H;
S2(:,1:size(S,2)) = S;
%// Perform Fourier Transform on each row separately of padded matrices
Hfft = fft(H2, [], 2);
Sfft = fft(S2, [], 2);
%// Perform convolution
Yfft = Hfft .* Sfft;
%// Take inverse Fourier Transform and convert to real
Y2 = real(ifft(Yfft, [], 2));
%// Trim off unnecessary values
Y2 = Y2(:,size(H,2)/2 + 1 : end - size(H,2)/2 + 1);
Y2 should be the convolved result and should match Y in the previous for loop code.
Comparison between them both
If you actually want to compare them, we can. What we'll need to do first is define H and S. To reconstruct what I did, I generated random values with a known seed:
rng(123);
H = rand(600,10);
S = rand(600,597);
Once we run the above code for both the time domain version and frequency domain version, let's see how they match up in the command prompt. Let's show the first 5 rows and 5 columns:
>> format long g;
>> Y(1:5,1:5)
ans =
1.63740867892464 1.94924208172753 2.38365646354643 2.05455605619097 2.21772526557861
2.04478411247085 2.15915645246324 2.13672842742653 2.07661341840867 2.61567534623066
0.987777477630861 1.3969752201781 2.46239452105228 3.07699790208937 3.04588738611503
1.36555260994797 1.48506871890027 1.69896157726456 1.82433906982894 1.62526864072424
1.52085236885395 2.53506897420001 2.36780282057747 2.22335617436888 3.04025523335182
>> Y2(1:5,1:5)
ans =
1.63740867892464 1.94924208172753 2.38365646354643 2.05455605619097 2.21772526557861
2.04478411247085 2.15915645246324 2.13672842742653 2.07661341840867 2.61567534623066
0.987777477630861 1.3969752201781 2.46239452105228 3.07699790208937 3.04588738611503
1.36555260994797 1.48506871890027 1.69896157726456 1.82433906982894 1.62526864072424
1.52085236885395 2.53506897420001 2.36780282057747 2.22335617436888 3.04025523335182
Looks good to me! As another measure, let's figure out what the largest difference is between one value in Y and a corresponding value in Y2:
>> max(abs(Y(:) - Y2(:)))
ans =
5.32907051820075e-15
That's saying that the max error seen between both outputs is in the order of 10-15. I'd say that's pretty good.

Calculating the essential matrix from two sets of corresponding points

I'm trying to reconstruct a 3d image from two calibrated cameras. One of the steps involved is to calculate the 3x3 essential matrix E, from two sets of corresponding (homogeneous) points (more than the 8 required) P_a_orig and P_b_orig and the two camera's 3x3 internal calibration matrices K_a and K_b.
We start off by normalizing our points with
P_a = inv(K_a) * p_a_orig
and
P_b = inv(K_b) * p_b_orig
We also know the constraint
P_b' * E * P_a = 0
I'm following it this far, but how do you actually solve that last problem, e.g. finding the nine values of the E matrix? I've read several different lecture notes on this subject, but they all leave out that crucial last step. Likely because it is supposedly trivial math, but I can't remember when I last did this and I haven't been able to find a solution yet.
This equation is actually pretty common in geometry algorithms, essentially, you are trying to calculate the matrix X from the equation AXB=0. To solve this, you vectorise the equation, which means,
vec() means vectorised form of a matrix, i.e., simply stack the coloumns of the matrix one over the another to produce a single coloumn vector. If you don't know the meaning of the scary looking symbol, its called Kronecker product and you can read it from here, its easy, trust me :-)
Now, say I call the matrix obtained by Kronecker product of B^T and A as C.
Then, vec(X) is the null vector of the matrix C and the way to obtain that is by doing the SVD decomposition of C^TC (C transpose multiplied by C) and take the the last coloumn of the matrix V. This last coloumn is nothing but your vec(X). Reshape X to 3 by 3 matrix. This is you Essential matrix.
In case you find this maths too daunting to code, simply use the following code by Y.Ma et.al:
% p are homogenius coordinates of the first image of size 3 by n
% q are homogenius coordinates of the second image of size 3 by n
function [E] = essentialDiscrete(p,q)
n = size(p);
NPOINTS = n(2);
% set up matrix A such that A*[v1,v2,v3,s1,s2,s3,s4,s5,s6]' = 0
A = zeros(NPOINTS, 9);
if NPOINTS < 9
error('Too few mesurements')
return;
end
for i = 1:NPOINTS
A(i,:) = kron(p(:,i),q(:,i))';
end
r = rank(A);
if r < 8
warning('Measurement matrix rank defficient')
T0 = 0; R = [];
end;
[U,S,V] = svd(A);
% pick the eigenvector corresponding to the smallest eigenvalue
e = V(:,9);
e = (round(1.0e+10*e))*(1.0e-10);
% essential matrix
E = reshape(e, 3, 3);
You can do several things:
The Essential matrix can be estimated using the 8-point algorithm, which you can implement yourself.
You can use the estimateFundamentalMatrix function from the Computer Vision System Toolbox, and then get the Essential matrix from the Fundamental matrix.
Alternatively, you can calibrate your stereo camera system using the estimateCameraParameters function in the Computer Vision System Toolbox, which will compute the Essential matrix for you.

Linear equations with multidimensional matrices [Modified]

There is a system of 3 linear equations composing of matrices which are represented by RGB image. Say
A = A1*x1 + A2*x2 + A3*x3 ......(Eq 1)
B= A1*x4 + A2*x5 + A3*x6 ........(Eq 2)
C= A1*x7 + A2*x8 + A3*x9 ........(Eq 3)
each are of equal dimension say 3D. I performed the following
A11=rgb2gray(A1);
x11=rgb2gray(x1);
A11 =double(A1) ; x11 = double(x11); b = A1*x1;
opts.UT = true; opts.TRANSA = false;
y1 = linsolve(x1,b,opts);
imshow(y1);
% The objective is to obtain A1,A2,A3
On doing this, following issues have surfaced:
1. Error
The output y1 is not the same as A1, which should have been. Why is it so? Please help
The R,G and B spaces are orthogonal. So you can solve each of those sets independently. The problem here is that mtimes, which is your matrix multiplication operator, doesn't accept 3D inputs.
To solve this, you can loop through each of R, G and B and use linsolve for each of the resulting 2D matrices. Normally, I wouldn't recommend loops for anything in MATLAB, but here, there won't be any discernable overhead as there are only 3 iterations in the loop.
Your answer will not be any different from what it would be if you were to solve them all in one go (if that were possible), because the three spaces are independent.
EDIT
The way you've written your equations, the xi's form the coefficient matrix and Ai's are the unknowns. The system of equations can be written compactly as XY=Z, where X is a 3D matrix composed of the coefficients, xi for each color space,RGB; Y is a 2D matrix, with a vector [A1, A2, A3]' in each color space, and Z is also a 2D matrix with vectors [A, B, C]' in each color space.
Assuming that the colorspace is the last dimension, you can try
[xPixels,yPixels,colorSpace]=size(X);
Y=zeros(yPixels,colorspace);
opts.UT=true; opts.TRANSA=false;
for i=1:colorspace
Y(:,i)=linsolve(X(:,:,i),Z(:,i),opts);
end
You'll have to setup the matrices X, Y and Z according to your problem. It is helpful to keep the looped dimension (in this case, colorspace) as the outermost dimension, as otherwise, you'll have to use squeeze to remove the singleton dimensions.