I am using MATLAB to try to interpolate data for an object that is moving in 3D space at variable speed. I am starting with an array with columns: time, x, y, z, velocity. I want to interpolate the xyz path, but I can't figure out how to interpolate time and velocity at the same points that the xyz interpolation produces.
My problem is that if I interpolate using the cscvn function and fnval, then the interpolated points are not evenly spaced (yellow stars in the below image) and I'm not sure how to interpolate the times and speeds for those points.
Alternatively if I interpolate with interp1, it does produce evenly spaced points, but the interpolation is not better with cscvn.
I tried doing a 5 dimensional interpolation, and that didn't produce the desired results. I'm not sure how to deal with this problem.
How can I interpolate the xyz path, and then interpolate the time and velocities at those unevenly spaced points?
Here is the code I am using:
% Generate some fake data
flightPathRate = 1;
x = (-5:flightPathRate:10)';
y = sin(4*x);
z = linspace(3,5, length(x))';
t = ((0:length(x)-1)*flightPathRate)';
vel = x.^2 + 10;
pathData = [t x y z vel];
% Interpolate with cscvn
curve = cscvn(pathData(:,2:4)');
plot3(x, y, z, 'ob-')
hold on
fnplt(curve)
% Evaluate the spline curve created with cscvn at finer points.
splinePoints = fnval(curve, 0:0.1:16);
plot3(splinePoints(1,:), splinePoints(2,:), splinePoints(3,:), '*')
%% Interpolate with interp1
cs = cat(1,0,cumsum(sqrt(sum(diff([x, y, z], [], 1).^2, 2))));
dd = interp1(cs, [x, y, z], unique([cs(:)' linspace(0,cs(end),100)]), 'spline')
hold on
plot3(dd(:,1), dd(:,2), dd(:,3), '.r-')
axis image, view(3), legend({'Original', 'Spline Curve with cscvn/fnplt', 'Interp. Points with cscvn/fnval', 'Interp. Spline with interp1'})
Here is the plot produced.
I ran your code successfully.
Q.1: Please explain the role of velocity in your code. You define vel as fake data, at every fake data time point. But it is totally unrelated to the x,y,z fake data.
Answer to your question about how to determine the times associated with the x,y,z points which you get from cscvn(): there is no reasonable proven way to do that. Therefore I recommend that you not use cscvn(). Its main advantage is to make periodic splines, i.e. splines for cirves that return to their origin. But this problem is not like that.
Your interpolated data from interp1() looks good to me. I would go with it. It is a simple matter to esitmate velocity (|v| and vx, vy, vz) from the interpolated points. When you do, I recommend using the interpolated points before and after each point, to get an un-shifted estimate in the middle. Try the 'makima' or 'pchip' method with interp1(), instead of the 'spline' method, if you think 'spline' overshoots too much.
Related
I'm trying to fit a shape perserving interpolation curve to my angular data (r/phi).
However, as I have repeated x-values when I transform the datapoints to (x/y), I can not simply use pchip.
I know for spline interpolation, there is cscvn and fnplt, is there anything similar for pchip?
Furthermore, there is an example of spline fitting to angular data in the matlab documentation of "spline", but I don't quite get it how I could adapt it to pchip and different data points.
I also found the interparc-function by John d'Errico, but I would like to keep my datapoints instead of having equally spaced ones.
To make it clearer, here a figure of my datapoints with linear (blue) and spline interpolation (black). The curve I'd like to get would be something in between this two, without the steep edges in the linear case but with less overshoot than in the spline case....
Thanks for your help!
use 1D parametric interpolation:
n = 20;
r = 1 + rand(n-1,1)*0.01;%noisy r's
theta = sort(2*pi*rand(n-1,1));
% closing the circle
r(end+1) = r(1);
theta(end+1) = theta(1);
% convert to cartesian
[x,y] = pol2cart(theta,r);
% interpolate with parameter t
t = (1:n)';
v = [x,y];
tt = linspace(1,n,100);
X = interp1(t,v,tt,'pchip');
% plot
plot(x,y,'o');
hold on
plot(X(:,1),X(:,2));
It seems to be very basic question, but I wonder when I plot x values against y values, what interpolation technique is used behind the scene to show me the discrete data as continuous? Consider the following example:
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
My guess is it is a Lagrangian interpolation?
No, it's just a linear interpolation. Your example uses a quite long dataset, so you can't tell the difference. Try plotting a short dataset and you'll see it.
MATLAB's plot performs simple linear interpolation. For finer resolution you'd have to supply more sample points or interpolate between the given x values.
For example taking the sinus from the answer of FamousBlueRaincoat, one can just create an x vector with more equidistant values. Note, that the linear interpolated values coincide with the original plot lines, as the original does use linear interpolation as well. Note also, that the x_ip vector does not include (all) of the original points. This is why the do not coincide at point (~0.8, ~0.7).
Code
x = 0:pi/4:2*pi;
y = sin(x);
x_ip = linspace(x(1),x(end),5*numel(x));
y_lin = interp1(x,y,x_ip,'linear');
y_pch = interp1(x,y,x_ip,'pchip');
y_v5c = interp1(x,y,x_ip,'v5cubic');
y_spl = interp1(x,y,x_ip,'spline');
plot(x,y,x_ip,y_lin,x_ip,y_pch,x_ip,y_v5c,x_ip,y_spl,'LineWidth',1.2)
set(gca,'xlim',[pi/5 pi/2],'ylim',[0.5 1],'FontSize',16)
hLeg = legend(...
'No Interpolation','Linear Interpolation',...
'PChip Interpolation','v5cubic Interpolation',...
'Spline Interpolation');
set(hLeg,'Location','south','Fontsize',16);
By the way..this does also apply to mesh and others
[X,Y] = meshgrid(-8:2:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
figure
mesh(Z)
No, Lagrangian interpolation with 200 equally spaced points would be an incredibly bad idea. (See: Runge's phenomenon).
The plot command simply connects the given (x,y) points by straight lines, in the order given. To see this for yourself, use fewer points:
x = 0:pi/4:2*pi;
y = sin(x);
plot(x,y)
I'm currently frustrated by the following problem:
I've got trajectory data (i.e.: Longitude and Latitude data) which I interpolate to find a linear fitting (using polyfit and polyval in matlab).
What I'd like to do is to rotate the axes in a way that the x-axis (the Longitude one) ends up lying on the best-fit line, and therefore my data should now lie on this (rotated) axis.
What I've tried is to evaluate the rotation matrix from the slope of the line-of-fit (m in the formula for a first grade polynomial y=mx+q) as
[cos(m) -sin(m);sin(m) cos(m)]
and then multiply my original data by this matrix...to no avail!
I keep obtaining a plot where my data lay in the middle and not on the x-axis where I expect them to be.
What am I missing?
Thank you for any help!
Best Regards,
Wintermute
A couple of things:
If you have a linear function y=mx+b, the angle of that line is atan(m), not m. These are approximately the same for small m', but very different for largem`.
The linear component of a 2+ order polyfit is different than the linear component of a 1st order polyfit. You'll need to fit the data twice, once at your working level, and once with a first order fit.
Given a slope m, there are better ways of computing the rotation matrix than using trig functions (e.g. cos(atan(m))). I always try to avoid trig functions when performing geometry and replace them with linear algebra operations. This is usually faster, and leads to fewer problems with singularities. See code below.
This method is going to lead to problems for some trajectories. For example, consider a north/south trajectory. But that is a longer discussion.
Using the method described, plus the notes above, here is some sample code which implements this:
%Setup some sample data
long = linspace(1.12020, 1.2023, 1000);
lat = sin ( (long-min(long)) / (max(long)-min(long))*2*pi )*0.0001 + linspace(.2, .31, 1000);
%Perform polynomial fit
p = polyfit(long, lat, 4);
%Perform linear fit to identify rotation
pLinear = polyfit(long, lat, 1);
m = pLinear(1); %Assign a common variable for slope
angle = atan(m);
%Setup and apply rotation
% Compute rotation metrix using trig functions
rotationMatrix = [cos(angle) sin(angle); -sin(angle) cos(angle)];
% Compute same rotation metrix without trig
a = sqrt(m^2/(1+m^2)); %a, b are the solution to the system:
b = sqrt(1/(1+m^2)); % {a^2+b^2 = 1}, {m=a/b}
% %That is, the point (b,a) is on the unit
% circle, on a line with slope m
rotationMatrix = [b a; -a b]; %This matrix rotates the point (b,a) to (1,0)
% Generally you rotate data after removing the mean value
longLatRotated = rotationMatrix * [long(:)-mean(long) lat(:)-mean(lat)]';
%Plot to confirm
figure(2937623)
clf
subplot(211)
hold on
plot(long, lat, '.')
plot(long, polyval(p, long), 'k-')
axis tight
title('Initial data')
xlabel('Longitude')
ylabel('Latitude')
subplot(212)
hold on;
plot(longLatRotated(1,:), longLatRotated(2,:),'.b-');
axis tight
title('Rotated data')
xlabel('Rotated x axis')
ylabel('Rotated y axis')
The angle you are looking for in the rotation matrix is the angle of the line makes to the horizontal. This can be found as the arc-tangent of the slope since:
tan(\theta) = Opposite/Adjacent = Rise/Run = slope
so t = atan(m) and noting that you want to rotate the line back to horizontal, define the rotation matrix as:
R = [cos(-t) sin(-t)
sin(-t) cos(-t)]
Now you can rotate your points with R
i just started with my master thesis and i already am in trouble with my capability/understanding of matlab.
The thing is, i have a trajectory on a surface of a planet/moon whatever (a .mat with the time, and the coordinates. Then i have some .mat with time and the measurement at that time.
I am able to plot this as a color coded trajectory (using the measurement and the coordinates) in scatter(). This works awesomely nice.
However my problem is that i need something more sophisticated.
I now need to take the trajectory and instead of color-coding it, i am supposed to add the graph (value) of the measurement (which is given for each point) to the trajectory (which is not always a straight line). I will added a little sketch to explain what i want. The red arrow shows what i want to add to my plot and the green shows what i have.
You can always transform your data yourself: (using the same notation as #Shai)
x = 0:0.1:10;
y = x;
m = 10*sin(x);
So what you need is the vector normal to the curve at each datapoint:
dx = diff(x); % backward finite differences for 2:end points
dx = [dx(1) dx]; % forward finite difference for 1th point
dy = diff(y);
dy = [dy(1) dy];
curve_tang = [dx ; dy];
% rotate tangential vectors 90° counterclockwise
curve_norm = [-dy; dx];
% normalize the vectors:
nrm_cn = sqrt(sum(abs(curve_norm).^2,1));
curve_norm = curve_norm ./ repmat(sqrt(sum(abs(curve_norm).^2,1)),2,1);
Multiply that vector with the measurement (m), offset it with the datapoint coordinates and you're done:
mx = x + curve_norm(1,:).*m;
my = y + curve_norm(2,:).*m;
plot it with:
figure; hold on
axis equal;
scatter(x,y,[],m);
plot(mx,my)
which is imo exactly what you want. This example has just a straight line as coordinates, but this code can handle any curve just fine:
x=0:0.1:10;y=x.^2;m=sin(x);
t=0:pi/50:2*pi;x=5*cos(t);y=5*sin(t);m=sin(5*t);
If I understand your question correctly, what you need is to rotate your actual data around an origin point at a certain angle. This is pretty simple, as you only need to multiply the coordinates by a rotation matrix. You can then use hold on and plot to overlay your plot with the rotated points, as suggested in the comments.
Example
First, let's generate some data that resembles yours and create a scatter plot:
% # Generate some data
t = -20:0.1:20;
idx = (t ~= 0);
y = ones(size(t));
y(idx) = abs(sin(t(idx)) ./ t(idx)) .^ 0.25;
% # Create a scatter plot
x = 1:numel(y);
figure
scatter(x, x, 10, y, 'filled')
Now let's rotate the points (specified by the values of x and y) around (0, 0) at a 45° angle:
P = [x(:) * sqrt(2), y(:) * 100] * [1, 1; -1, 1] / sqrt(2);
and then plot them on top of the scatter plot:
hold on
axis square
plot(P(:, 1), P(:, 2))
Note the additional things have been done here for visualization purposes:
The final x-coordinates have been stretched (by sqrt(2)) to the appropriate length.
The final y-coordinates have been magnified (by 100) so that the rotated plot stands out.
The axes have been squared to avoid distortion.
This is what you should get:
It seems like you are interested in 3D plotting.
If I understand your question correctly, you have a 2D curve represented as [x(t), y(t)].
Additionally, you have some value m(t) for each point.
Thus we are looking at the plot of a 3D curve [x(t) y(t) m(t)].
you can easily achieve this using
plot3( x, y, m ); % assuming x,y, and m are sorted w.r.t t
alternatively, you can use the 3D version of scatter
scatter3( x, y, m );
pick your choice.
Nice plot BTW.
Good luck with your thesis.
I apologize for the ambiguous title, but I am not entirely sure how to phrase this one. So bear with me.
I have a matrix of data. Each column and row represents a certain vector (column 1 = row 1, column 2 = row 2, etc.), and every cell value is the cosine similarity between the corresponding vectors. So every value in the matrix is a cosine.
There are a couple of things I want to do with this. First, I want to create a figure that shows all of the vectors on it. I know the cosine of the angle between every vector, and I know the magnitude of each vector, but that is the only information I have - is there some algorithm I can implement that will run through all of the various pair-wise angles and display it graphically? That is, I don't know where all the vectors are in relation to each other, and there are too many data points to do this by hand (e.g. if I only had three vectors, and the angles between them all were 45, 12, and 72 degrees it would be trivial). So how do I go about doing this? I don't even have the slightest idea what sort of mathematical function I would need to do this. (I have 83 vectors, so that's thousands of cosine values). So basically this figure (it could be either 2D or multidimensional, and to be honest I would like to do both) would show all of the vectors and how they relate to each other in space (so I could compare both angles and relative magnitudes).
The other thing I would like to do is simpler but I am having a hard time figuring it out. I can convert the cosine values into Cartesian coordinates and display them in a scatter plot. Is there a way to connect each of the points of a scatter plot to (0,0) on the plot?
Finally, in trying to figure out how to do some of the above on my own I have run into some inconsistencies. I calculated the mean angles and Cartesian coordinates for each of the 83 vectors. The math for this is easy, and I have checked and double-checked it. However, when I try to plot it, different plotting methods give me radically different things. So, if I plot the Cartesian coordinates as a scatter plot I get this:
If I plot the mean angles in a compass plot I get this:
And if I use a quiver plot I get something like this (I transformed this a little by shifting the origin up and to the right just so you can see it better):
Am I doing something wrong, or am I misunderstanding the plotting functions I am using? Because these results all seem pretty inconsistent. The mean angles on the compass plot are all <30 degrees or so, but on the quiver plot some seem to exceed 90 degrees, and on the scatter plot they extend above 30 as well. What's going on here?
(Here is my code:)
cosine = load('LSA.txt');
[rows,columns]=size(cosine);
p = cosine.^2;
pp = bsxfun(#minus, 1, p);
sine = sqrt(pp);
tangent = sine./cosine;
Xx = zeros(rows,1);
Yy = zeros(rows,1);
for i = 1:columns
x = cosine(:,i);
y = sine(:,i);
Xx(i,1) = sum(x) * (1/columns);
Yy(i,1) = sum(y) * (1/columns);
end
scatter(Xx,Yy);
Rr = zeros(rows,1);
Uu = zeros(rows,1);
for j = 1:rows
Rr(j,1) = sqrt(Xx(j,1).^2 + Yy(j,1).^2);
Uu(j,1) = atan2(Xx(j,1),Yy(j,2));
end
%COMPASS PLOT
[theta,rho] = pol2cart(Uu,1);
compass(theta,rho);
%QUIVER PLOT
r = 7;
sx = ones(size(cosine))*2; sy = ones(size(cosine))*2;
pu = r * cosine;
pv = r * sine;
h = quiver(sx,sy,pu,pv);
set(gca, 'XLim', [1 10], 'YLim', [1 10]);
You can exactly solve this problem. The dot product calculates the cosine. This means your matrix is actually M=V'*V
This should be solvable through eigenvalues. And you said you also have the length.
Your only problem - as your original matrix the vectors will be 83 dimensional. Not easy to plot in 2 or 3 dimensions. I think you are over simplifying by just using the average angle. There are some techniques called dimensionality reduction - here's a toolbox. I would suggest a sammon projection on 1-cosine (as this would be the distance of points on the unit ball) to calculate the vectors for such a plot.
In the quiver plot, you are plotting all of the data in the cosine and sine matrices. In the other plots, you are only plotting the means. The first two plots appear to match up, so no problem there.
A few other things. I notice that in
Uu(j,1) = atan2(Xx(j,1),Yy(j,2));
Yy(j,2) is not actually defined, so it seems like this code should fail.
Furthermore, you could define Yy and Xx as:
Xx = mean(cosine,2);
Yy = mean(sine,2);
And also get rid of the other for loop:
Rr = sqrt(Xx.^2 + Yy.^2)
Uu = atan2(Xx,Yy)
I still have to think about your first question, but I hope this was helpful.