I understand that using Kafka's own offset tracking instead of other methods (like checkpointing) is problematic for streaming jobs.
However I just want to run a Spark batch job every day, reading all messages from the last offset to the most recent and do some ETL with it.
In theory I want to read this data like so:
val dataframe = spark.read
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:6001")
.option("subscribe", "topic-in")
.option("includeHeaders", "true")
.option("kafka.group.id", s"consumer-group-for-this-job")
.load()
And have Spark commit the offsets back to Kafka based on the group.id
Unfortunately Spark never commits these back, so I went creative and added in the end of my etl job, this code to manually update the offsets for the consumer in Kafka:
val offsets: Map[TopicPartition, OffsetAndMetadata] = dataFrame
.select('topic, 'partition, 'offset)
.groupBy("topic", "partition")
.agg(max('offset))
.as[(String, Int, Long)]
.collect()
.map {
case (topic, partition, maxOffset) => new TopicPartition(topic, partition) -> new OffsetAndMetadata(maxOffset)
}
.toMap
val props = new Properties()
props.put("group.id", "consumer-group-for-this-job")
props.put("bootstrap.servers", "localhost:6001")
props.put("key.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer")
props.put("value.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer")
props.put("enable.auto.commit", "false")
val kafkaConsumer = new KafkaConsumer[Array[Byte], Array[Byte]](props)
kafkaConsumer.commitSync(offsets.asJava)
Which technically works, but still next time reading based on this group.id Spark will still start from the beginning.
Do I have to bite the bullet and keep track of the offsets somewhere, or is there something I'm overlooking?
BTW I'm testing this with EmbeddedKafka
"However I just want to run a Spark batch job every day, reading all messages from the last offset to the most recent and do some ETL with it."
The Trigger.Once is exactly made for this kind of requirement.
There is a nice blog from Databricks that explains why "Streaming and RunOnce is Better than Batch".
Most importantly:
"When you’re running a batch job that performs incremental updates, you generally have to deal with figuring out what data is new, what you should process, and what you should not. Structured Streaming already does all this for you."
Although your approach is working technically, I would really recommend to have Spark take care of the offset management.
It probably does not work with EmbeddedKafka as this is running only in memory and not remembering that you have committed some offsets between runs of your test code. Therefore, it starts reading again and again from earliest offset.
I managed to resolve it by leaving the spark.read as is, ignoring the group.id etc. But surrounding it with my own KafkaConsumer logic.
protected val kafkaConsumer: String => KafkaConsumer[Array[Byte], Array[Byte]] =
groupId => {
val props = new Properties()
props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId)
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, config.bootstrapServers)
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArrayDeserializer")
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArrayDeserializer")
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false")
new KafkaConsumer[Array[Byte], Array[Byte]](props)
}
protected def getPartitions(kafkaConsumer: KafkaConsumer[_, _], topic: String): List[TopicPartition] = {
import scala.collection.JavaConverters._
kafkaConsumer
.partitionsFor(topic)
.asScala
.map(p => new TopicPartition(topic, p.partition()))
.toList
}
protected def getPartitionOffsets(kafkaConsumer: KafkaConsumer[_, _], topic: String, partitions: List[TopicPartition]): Map[String, Map[String, Long]] = {
Map(
topic -> partitions
.map(p => p.partition().toString -> kafkaConsumer.position(p))
.map {
case (partition, offset) if offset == 0L => partition -> -2L
case mapping => mapping
}
.toMap
)
}
def getStartingOffsetsString(kafkaConsumer: KafkaConsumer[_, _], topic: String)(implicit logger: Logger): String = {
Try {
import scala.collection.JavaConverters._
val partitions: List[TopicPartition] = getPartitions(kafkaConsumer, topic)
kafkaConsumer.assign(partitions.asJava)
val startOffsets: Map[String, Map[String, Long]] = getPartitionOffsets(kafkaConsumer, topic, partitions)
logger.debug(s"Starting offsets for $topic: ${startOffsets(topic).filterNot(_._2 == -2L)}")
implicit val formats = org.json4s.DefaultFormats
Serialization.write(startOffsets)
} match {
case Success(jsonOffsets) => jsonOffsets
case Failure(e) =>
logger.error(s"Failed to retrieve starting offsets for $topic: ${e.getMessage}")
"earliest"
}
}
// MAIN CODE
val groupId = consumerGroupId(name)
val currentKafkaConsumer = kafkaConsumer(groupId)
val topic = config.topic.getOrElse(name)
val startingOffsets = getStartingOffsetsString(currentKafkaConsumer, topic)
val dataFrame = spark.read
.format("kafka")
.option("kafka.bootstrap.servers", config.bootstrapServers)
.option("subscribe", topic)
.option("includeHeaders", "true")
.option("startingOffsets", startingOffsets)
.option("enable.auto.commit", "false")
.load()
Try {
import scala.collection.JavaConverters._
val partitions: List[TopicPartition] = getPartitions(kafkaConsumer, topic)
val numRecords = dataFrame.cache().count() // actually read data from kafka
kafkaConsumer.seekToEnd(partitions.asJava) // assume the read has head everything
val endOffsets: Map[String, Map[String, Long]] = getPartitionOffsets(kafkaConsumer, topic, partitions)
logger.debug(s"Loaded $numRecords records")
logger.debug(s"Ending offsets for $topic: ${endOffsets(topic).filterNot(_._2 == -2L)}")
kafkaConsumer.commitSync()
kafkaConsumer.close()
} match {
case Success(_) => ()
case Failure(e) =>
logger.error(s"Failed to set offsets for $topic: ${e.getMessage}")
}
Related
I have written a code to fetch records from kafka into spark. I have come across some strange behaviour. It is consuming in inconsistent order.
val conf = new SparkConf()
.setAppName("Test Data")
.set("spark.cassandra.connection.host", "192.168.0.40")
.set("spark.cassandra.connection.keep_alive_ms", "20000")
.set("spark.executor.memory", "1g")
.set("spark.driver.memory", "2g")
.set("spark.submit.deployMode", "cluster")
.set("spark.executor.instances", "4")
.set("spark.executor.cores", "3")
.set("spark.cores.max", "12")
.set("spark.driver.cores", "4")
.set("spark.ui.port", "4040")
.set("spark.streaming.backpressure.enabled", "true")
.set("spark.streaming.kafka.maxRatePerPartition", "30")
.set("spark.local.dir", "//tmp//")
.set("spark.sql.warehouse.dir", "/tmp/hive/")
.set("hive.exec.scratchdir", "/tmp/hive2")
val spark = SparkSession
.builder
.appName("Test Data")
.config(conf)
.getOrCreate()
import spark.implicits._
val sc = SparkContext.getOrCreate(conf)
val ssc = new StreamingContext(sc, Seconds(10))
val topics = Map("topictest" -> 1)
val kafkaParams = Map[String, String](
"zookeeper.connect" -> "192.168.0.40:2181",
"group.id" -> "=groups",
"auto.offset.reset" -> "smallest")
val kafkaStream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics, StorageLevel.MEMORY_AND_DISK_SER)
}
kafkaStream.foreachRDD(rdd =>
{
if (!rdd.partitions.isEmpty) {
try {
println("Count of rows " + rdd.count())
} catch {
case e: Exception => e.printStackTrace
}
} else {
println("blank rdd")
}
})
So, Initially I produced 10 million records in kafka. Now producer is stopped and then started Spark Consumer Application. I checked Spark UI, initially I received 700,000-900,000 records per batch(every 10 seconds ) per stream, afterwards started getting 4-6K records per batch. So wanted to understand why the fetch count fell so badly despite the fact that data is present in Kafka so instead of giving 4k per batch , I'am open to consumer directly big size batch. What can be done and how ?
Thanks,
I am running spark with the local[8] configuration. The input is a kafka stream with 8 brokers. But as seen in the system monitor, it isn't parallel enough, it seems that about only one node is running. The input to the kafka streamer is about 1.6GB big, so it should process much faster.
system monitor
Kafka Producer:
import java.io.{BufferedReader, FileReader}
import java.util
import java.util.{Collections, Properties}
import logparser.LogEvent
import org.apache.hadoop.conf.Configuration
import org.apache.kafka.clients.producer.{KafkaProducer, Producer, ProducerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
object sparkStreaming{
private val NUMBER_OF_LINES = 100000000
val brokers ="localhost:9092,localhost:9093,localhost:9094,localhost:9095,localhost:9096,localhost:9097,localhost:9098,localhost:9099"
val topicName = "log-1"
val fileName = "data/HDFS.log"
val producer = getProducer()
// no hdfs , read from text file.
def produce(): Unit = {
try { //1. Get the instance of Configuration
val configuration = new Configuration
val fr = new FileReader(fileName)
val br = new BufferedReader(fr)
var line = ""
line = br.readLine
var count = 1
//while (line != null){
while ( {
line != null && count < NUMBER_OF_LINES
}) {
System.out.println("Sending batch " + count + " " + line)
producer.send(new ProducerRecord[String, LogEvent](topicName, new LogEvent(count,line,System.currentTimeMillis())))
line = br.readLine
count = count + 1
}
producer.close()
System.out.println("Producer exited successfully for " + fileName)
} catch {
case e: Exception =>
System.out.println("Exception while producing for " + fileName)
System.out.println(e)
}
}
private def getProducer() : KafkaProducer[String,LogEvent] = { // create instance for properties to access producer configs
val props = new Properties
//Assign localhost id
props.put("bootstrap.servers", brokers)
props.put("auto.create.topics.enable", "true")
//Set acknowledgements for producer requests.
props.put("acks", "all")
//If the request fails, the producer can automatically retry,
props.put("retries", "100")
//Specify buffer size in config
props.put("batch.size", "16384")
//Reduce the no of requests less than 0
props.put("linger.ms", "1")
//The buffer.memory controls the total amount of memory available to the producer for buffering.
props.put("buffer.memory", "33554432")
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.put("value.serializer", "logparser.LogEventSerializer")
props.put("topic.metadata.refresh.interval.ms", "1")
val producer = new KafkaProducer[String, LogEvent](props)
producer
}
def sendBackToKafka(logEvent: LogEvent): Unit ={
producer.send(new ProducerRecord[String, LogEvent] ("times",logEvent))
}
def main (args: Array[String]): Unit = {
println("Starting to produce");
this.produce();
}
}
Consumer:
package logparser
import java.io._
import java.util.Properties
import kafka.serializer.StringDecoder
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka010._
object consumer {
var tFromKafkaToSpark: Long = 0
var tParsing : Long = 0
val startTime = System.currentTimeMillis()
val CPUNumber = 8
val pw = new PrintWriter(new FileOutputStream("data/Streaming"+CPUNumber+"config2x.txt",false))
pw.write("Writing Started")
def printstarttime(): Unit ={
pw.print("StartTime : " + System.currentTimeMillis())
}
def printendtime(): Unit ={
pw.print("EndTime : " + System.currentTimeMillis());
}
val producer = getProducer()
private def getProducer() : KafkaProducer[String,TimeList] = { // create instance for properties to access producer configs
val props = new Properties
val brokers ="localhost:9090,"
//Assign localhost id
props.put("bootstrap.servers", brokers)
props.put("auto.create.topics.enable", "true")
//Set acknowledgements for producer requests.
props.put("acks", "all")
//If the request fails, the producer can automatically retry,
props.put("retries", "100")
//Specify buffer size in config
props.put("batch.size", "16384")
//Reduce the no of requests less than 0
props.put("linger.ms", "1")
//The buffer.memory controls the total amount of memory available to the producer for buffering.
props.put("buffer.memory", "33554432")
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.put("value.serializer", "logparser.TimeListSerializer")
props.put("topic.metadata.refresh.interval.ms", "1")
val producer = new KafkaProducer[String, TimeList](props)
producer
}
def sendBackToKafka(timeList: TimeList): Unit ={
producer.send(new ProducerRecord[String, TimeList]("times",timeList))
}
def main(args: Array[String]) {
val topics = "log-1"
//val Array(brokers, ) = Array("localhost:9092","log-1")
val brokers = "localhost:9092"
// Create context with 2 second batch interval
val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[" + CPUNumber + "]")
val ssc = new StreamingContext(sparkConf, Seconds(1))
// Create direct kafka stream with brokers and topics
val topicsSet = topics.split(",").toSet
var kafkaParams = Map[String, AnyRef]("metadata.broker.list" -> brokers)
kafkaParams = kafkaParams + ("bootstrap.servers" -> "localhost:9092,localhost:9093,localhost:9094,localhost:9095,localhost:9096,localhost:9097,localhost:9098,localhost:9099")
kafkaParams = kafkaParams + ("auto.offset.reset"-> "latest")
kafkaParams = kafkaParams + ("group.id" -> "test-consumer-group")
kafkaParams = kafkaParams + ("key.deserializer" -> classOf[StringDeserializer])
kafkaParams = kafkaParams + ("value.deserializer"-> "logparser.LogEventDeserializer")
//kafkaParams.put("zookeeper.connect", "192.168.101.165:2181");
kafkaParams = kafkaParams + ("enable.auto.commit"-> "true")
kafkaParams = kafkaParams + ("auto.commit.interval.ms"-> "1000")
kafkaParams = kafkaParams + ("session.timeout.ms"-> "20000")
kafkaParams = kafkaParams + ("metadata.max.age.ms"-> "1000")
val messages = KafkaUtils.createDirectStream[String, LogEvent](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, LogEvent](topicsSet, kafkaParams))
var started = false
val lines = messages.map(_.value)
val lineswTime = lines.map(event =>
{
event.addNextEventTime(System.currentTimeMillis())
event
}
)
lineswTime.foreachRDD(a => a.foreach(e => println(e.getTimeList)))
val logLines = lineswTime.map(
(event) => {
//println(event.getLogline.stringMessages.toString)
event.setLogLine(event.getContent)
println("Got event with id = " + event.getId)
event.addNextEventTime(System.currentTimeMillis())
println(event.getLogline.stringMessages.toString)
event
}
)
//logLines.foreachRDD(a => a.foreach(e => println(e.getTimeList + e.getLogline.stringMessages.toString)))
val x = logLines.map(le => {
le.addNextEventTime(System.currentTimeMillis())
sendBackToKafka(new TimeList(le.getTimeList))
le
})
x.foreachRDD(a => a.foreach(e => println(e.getTimeList)))
//logLines.map(ll => ll.addNextEventTime(System.currentTimeMillis()))
println("--------------***///*****-------------------")
//logLines.print(10)
/*
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
wordCounts.print()
*/
// Start the computation
ssc.start()
ssc.awaitTermination()
ssc.stop(false)
pw.close()
}
}
There's a piece of information missing in your problem statement: how many partitions does your input topic log-1 have?
My guess is that such topic have less than 8 partitions.
The parallelism of Spark Streaming (in case of a Kafka source) is tied (modulo re-partitioning) to the number of total Kafka partitions it consumes (i.e. the RDDs' partitions are taken from the Kafka partitions).
If, as I suspect, your input topic only has a few partitions, for each micro-batch Spark Streaming will task only an equal amount of nodes with the computation. All the other nodes will sit idling.
The fact that you see all the node working in an almost round-robin fashion is due to the fact that Spark do not always choose the same node for processing data for the same partition, but it actually actively mix things up.
In order to have a better idea on what's happening I'd need to see some statistics from the Spark UI Streaming page.
Given the information you provided so far however, the insufficient Kafka partitioning would be my best bet for this behaviour.
Everything consuming from Kafka is limited by the number of partitions your topic(s) has. One consumer per partition. How much do you have ?
Although Spark can redistribute the work, it's not recommended as you might be spending more time exchanging information between executors than actually processing it.
I'm trying prepare application for Spark streaming (Spark 2.1, Kafka 0.10)
I need to read data from Kafka topic "input", find correct data and write result to topic "output"
I can read data from Kafka base on KafkaUtils.createDirectStream method.
I converted the RDD to json and prepare filters:
val messages = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
val elementDstream = messages.map(v => v.value).foreachRDD { rdd =>
val PeopleDf=spark.read.schema(schema1).json(rdd)
import spark.implicits._
PeopleDf.show()
val PeopleDfFilter = PeopleDf.filter(($"value1".rlike("1"))||($"value2" === 2))
PeopleDfFilter.show()
}
I can load data from Kafka and write "as is" to Kafka use KafkaProducer:
messages.foreachRDD( rdd => {
rdd.foreachPartition( partition => {
val kafkaTopic = "output"
val props = new HashMap[String, Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092")
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](props)
partition.foreach{ record: ConsumerRecord[String, String] => {
System.out.print("########################" + record.value())
val messageResult = new ProducerRecord[String, String](kafkaTopic, record.value())
producer.send(messageResult)
}}
producer.close()
})
})
However, I cannot integrate those two actions > find in json proper value and write findings to Kafka: write PeopleDfFilter in JSON format to "output" Kafka topic.
I have a lot of input messages in Kafka, this is the reason I want to use foreachPartition to create the Kafka producer.
The process is very simple so why not use structured streaming all the way?
import org.apache.spark.sql.functions.from_json
spark
// Read the data
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", inservers)
.option("subscribe", intopic)
.load()
// Transform / filter
.select(from_json($"value".cast("string"), schema).alias("value"))
.filter(...) // Add the condition
.select(to_json($"value").alias("value")
// Write back
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", outservers)
.option("subscribe", outtopic)
.start()
Try using Structured Streaming for that. Even if you used Spark 2.1, you may implement your own Kafka ForeachWriter as followed:
Kafka sink:
import java.util.Properties
import kafkashaded.org.apache.kafka.clients.producer._
import org.apache.spark.sql.ForeachWriter
class KafkaSink(topic:String, servers:String) extends ForeachWriter[(String, String)] {
val kafkaProperties = new Properties()
kafkaProperties.put("bootstrap.servers", servers)
kafkaProperties.put("key.serializer",
classOf[org.apache.kafka.common.serialization.StringSerializer].toString)
kafkaProperties.put("value.serializer",
classOf[org.apache.kafka.common.serialization.StringSerializer].toString)
val results = new scala.collection.mutable.HashMap[String, String]
var producer: KafkaProducer[String, String] = _
def open(partitionId: Long,version: Long): Boolean = {
producer = new KafkaProducer(kafkaProperties)
true
}
def process(value: (String, String)): Unit = {
producer.send(new ProducerRecord(topic, value._1 + ":" + value._2))
}
def close(errorOrNull: Throwable): Unit = {
producer.close()
}
}
Usage:
val topic = "<topic2>"
val brokers = "<server:ip>"
val writer = new KafkaSink(topic, brokers)
val query =
streamingSelectDF
.writeStream
.foreach(writer)
.outputMode("update")
.trigger(ProcessingTime("25 seconds"))
.start()
I am consuming and processing messages in the Kafka consumer application using Spark in Scala. Sometimes it takes little more time than usual to process messages from Kafka message queue. At that time I need to consume latest message, ignoring the earlier ones which have been published by the producer and yet to be consumed.
Here is my consumer code:
object KafkaSparkConsumer extends MessageProcessor {
def main(args: scala.Array[String]): Unit = {
val properties = readProperties()
val streamConf = new SparkConf().setMaster("local[*]").setAppName("Kafka-Stream")
val ssc = new StreamingContext(streamConf, Seconds(1))
val group_id = Random.alphanumeric.take(4).mkString("dfhSfv")
val kafkaParams = Map("metadata.broker.list" -> properties.getProperty("broker_connection_str"),
"zookeeper.connect" -> properties.getProperty("zookeeper_connection_str"),
"group.id" -> group_id,
"auto.offset.reset" -> properties.getProperty("offset_reset"),
"zookeeper.session.timeout" -> properties.getProperty("zookeeper_timeout"))
val msgStream = KafkaUtils.createStream[scala.Array[Byte], String, DefaultDecoder, StringDecoder](
ssc,
kafkaParams,
Map("moved_object" -> 1),
StorageLevel.MEMORY_ONLY_SER
).map(_._2)
msgStream.foreachRDD { x =>
x.foreach {
msg => println("Message: "+msg)
processMessage(msg)
}
}
ssc.start()
ssc.awaitTermination()
}
}
Is there any way to make sure the consumer always gets the most recent message in the consumer application? Or do I need to set any property in Kafka configuration to achieve the same?
Any help on this would be greatly appreciated. Thank you
Kafka consumer api include method
void seekToEnd(Collection<TopicPartition> partitions)
So, you can get assigned partitions from consumer and seek for all of them to the end. There is similar method to seekToBeginning.
You can leverage two KafkaConsumer APIs to get the very last message from a partition (assuming log compaction won't be an issue):
public Map<TopicPartition, Long> endOffsets(Collection<TopicPartition> partitions): This gives you the end offset of the given partitions. Note that the end offset is the offset of the next message to be delivered.
public void seek(TopicPartition partition, long offset): Run this for each partition and provide its end offset from above call minus 1 (assuming it's greater than 0).
You can always generate a new (random) group id when connecting to Kafka - that way you will start consuming new messages when you connect.
Yes, you can set staringOffset to latest to consume latest messages.
val spark = SparkSession
.builder
.appName("kafka-reading")
.getOrCreate()
import spark.implicits._
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("startingOffsets", "latest")
.option("subscribe", topicName)
.load()
I am using Spark Streaming to process data between two Kafka queues but I can not seem to find a good way to write on Kafka from Spark. I have tried this:
input.foreachRDD(rdd =>
rdd.foreachPartition(partition =>
partition.foreach {
case x: String => {
val props = new HashMap[String, Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
println(x)
val producer = new KafkaProducer[String, String](props)
val message = new ProducerRecord[String, String]("output", null, x)
producer.send(message)
}
}
)
)
and it works as intended but instancing a new KafkaProducer for every message is clearly unfeasible in a real context and I'm trying to work around it.
I would like to keep a reference to a single instance for every process and access it when I need to send a message. How can I write to Kafka from Spark Streaming?
Yes, unfortunately Spark (1.x, 2.x) doesn't make it straight-forward how to write to Kafka in an efficient manner.
I'd suggest the following approach:
Use (and re-use) one KafkaProducer instance per executor process/JVM.
Here's the high-level setup for this approach:
First, you must "wrap" Kafka's KafkaProducer because, as you mentioned, it is not serializable. Wrapping it allows you to "ship" it to the executors. The key idea here is to use a lazy val so that you delay instantiating the producer until its first use, which is effectively a workaround so that you don't need to worry about KafkaProducer not being serializable.
You "ship" the wrapped producer to each executor by using a broadcast variable.
Within your actual processing logic, you access the wrapped producer through the broadcast variable, and use it to write processing results back to Kafka.
The code snippets below work with Spark Streaming as of Spark 2.0.
Step 1: Wrapping KafkaProducer
import java.util.concurrent.Future
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord, RecordMetadata}
class MySparkKafkaProducer[K, V](createProducer: () => KafkaProducer[K, V]) extends Serializable {
/* This is the key idea that allows us to work around running into
NotSerializableExceptions. */
lazy val producer = createProducer()
def send(topic: String, key: K, value: V): Future[RecordMetadata] =
producer.send(new ProducerRecord[K, V](topic, key, value))
def send(topic: String, value: V): Future[RecordMetadata] =
producer.send(new ProducerRecord[K, V](topic, value))
}
object MySparkKafkaProducer {
import scala.collection.JavaConversions._
def apply[K, V](config: Map[String, Object]): MySparkKafkaProducer[K, V] = {
val createProducerFunc = () => {
val producer = new KafkaProducer[K, V](config)
sys.addShutdownHook {
// Ensure that, on executor JVM shutdown, the Kafka producer sends
// any buffered messages to Kafka before shutting down.
producer.close()
}
producer
}
new MySparkKafkaProducer(createProducerFunc)
}
def apply[K, V](config: java.util.Properties): MySparkKafkaProducer[K, V] = apply(config.toMap)
}
Step 2: Use a broadcast variable to give each executor its own wrapped KafkaProducer instance
import org.apache.kafka.clients.producer.ProducerConfig
val ssc: StreamingContext = {
val sparkConf = new SparkConf().setAppName("spark-streaming-kafka-example").setMaster("local[2]")
new StreamingContext(sparkConf, Seconds(1))
}
ssc.checkpoint("checkpoint-directory")
val kafkaProducer: Broadcast[MySparkKafkaProducer[Array[Byte], String]] = {
val kafkaProducerConfig = {
val p = new Properties()
p.setProperty("bootstrap.servers", "broker1:9092")
p.setProperty("key.serializer", classOf[ByteArraySerializer].getName)
p.setProperty("value.serializer", classOf[StringSerializer].getName)
p
}
ssc.sparkContext.broadcast(MySparkKafkaProducer[Array[Byte], String](kafkaProducerConfig))
}
Step 3: Write from Spark Streaming to Kafka, re-using the same wrapped KafkaProducer instance (for each executor)
import java.util.concurrent.Future
import org.apache.kafka.clients.producer.RecordMetadata
val stream: DStream[String] = ???
stream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
val metadata: Stream[Future[RecordMetadata]] = partitionOfRecords.map { record =>
kafkaProducer.value.send("my-output-topic", record)
}.toStream
metadata.foreach { metadata => metadata.get() }
}
}
Hope this helps.
My first advice would be to try to create a new instance in foreachPartition and measure if that is fast enough for your needs (instantiating heavy objects in foreachPartition is what the official documentation suggests).
Another option is to use an object pool as illustrated in this example:
https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/kafka/PooledKafkaProducerAppFactory.scala
I however found it hard to implement when using checkpointing.
Another version that is working well for me is a factory as described in the following blog post, you just have to check if it provides enough parallelism for your needs (check the comments section):
http://allegro.tech/2015/08/spark-kafka-integration.html
With Spark >= 2.2
Both read and write operations are possible on Kafka using Structured Streaming API
Build stream from Kafka topic
// Subscribe to a topic and read messages from the earliest to latest offsets
val ds= spark
.readStream // use `read` for batch, like DataFrame
.format("kafka")
.option("kafka.bootstrap.servers", "brokerhost1:port1,brokerhost2:port2")
.option("subscribe", "source-topic1")
.option("startingOffsets", "earliest")
.option("endingOffsets", "latest")
.load()
Read the key and value and apply the schema for both, for simplicity we are making converting both of them to String type.
val dsStruc = ds.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
Since dsStruc have the schema, it accepts all SQL kind operations like filter, agg, select ..etc on it.
Write stream to Kafka topic
dsStruc
.writeStream // use `write` for batch, like DataFrame
.format("kafka")
.option("kafka.bootstrap.servers", "brokerhost1:port1,brokerhost2:port2")
.option("topic", "target-topic1")
.start()
More configuration for Kafka integration to read or write
Key artifacts to add in the application
"org.apache.spark" % "spark-core_2.11" % 2.2.0,
"org.apache.spark" % "spark-streaming_2.11" % 2.2.0,
"org.apache.spark" % "spark-sql-kafka-0-10_2.11" % 2.2.0,
There is a Streaming Kafka Writer maintained by Cloudera (actually spun off from a Spark JIRA [1]). It basically creates a producer per partition, which amortizes the time spent to create 'heavy' objects over a (hopefully large) collection of elements.
The Writer can be found here: https://github.com/cloudera/spark-kafka-writer
I was having the same issue and found this post.
The author solves the problem by creating 1 producer per executor. Instead of sending the producer itself, he sends only a “recipe” how to create a producer in an executor by broadcasting it.
val kafkaSink = sparkContext.broadcast(KafkaSink(conf))
He uses a wrapper that lazily creates the producer:
class KafkaSink(createProducer: () => KafkaProducer[String, String]) extends Serializable {
lazy val producer = createProducer()
def send(topic: String, value: String): Unit = producer.send(new ProducerRecord(topic, value))
}
object KafkaSink {
def apply(config: Map[String, Object]): KafkaSink = {
val f = () => {
val producer = new KafkaProducer[String, String](config)
sys.addShutdownHook {
producer.close()
}
producer
}
new KafkaSink(f)
}
}
The wrapper is serializable because the Kafka producer is initialized just before first use on an executor. The driver keeps the reference to the wrapper and the wrapper sends the messages using each executor's producer:
dstream.foreachRDD { rdd =>
rdd.foreach { message =>
kafkaSink.value.send("topicName", message)
}
}
Why is it infeasible? Fundamentally each partition of each RDD is going to run independently (and may well run on a different cluster node), so you have to redo the connection (and any synchronization) at the start of each partition's task. If the overhead of that is too high then you should increase the batch size in your StreamingContext until it becomes acceptable (obv. there's a latency cost to doing this).
(If you're not handling thousands of messages in each partition, are you sure you need spark-streaming at all? Would you do better with a standalone application?)
This might be what you want to do. You basically create one producer for each partition of records.
input.foreachRDD(rdd =>
rdd.foreachPartition(
partitionOfRecords =>
{
val props = new HashMap[String, Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String,String](props)
partitionOfRecords.foreach
{
case x:String=>{
println(x)
val message=new ProducerRecord[String, String]("output",null,x)
producer.send(message)
}
}
})
)
Hope that helps
With Spark < 2.2
Since there is no direct way of writing the messages to Kafka from Spark Streaming
Create a KafkaSinkWritter
import java.util.Properties
import org.apache.kafka.clients.producer._
import org.apache.spark.sql.ForeachWriter
class KafkaSink(topic:String, servers:String) extends ForeachWriter[(String, String)] {
val kafkaProperties = new Properties()
kafkaProperties.put("bootstrap.servers", servers)
kafkaProperties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
kafkaProperties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
val results = new scala.collection.mutable.HashMap[String, String]
var producer: KafkaProducer[String, String] = _
def open(partitionId: Long,version: Long): Boolean = {
producer = new KafkaProducer(kafkaProperties)
true
}
def process(value: (String, String)): Unit = {
producer.send(new ProducerRecord(topic, value._1 + ":" + value._2))
}
def close(errorOrNull: Throwable): Unit = {
producer.close()
}
}
Write messages using SinkWriter
val topic = "<topic2>"
val brokers = "<server:ip>"
val writer = new KafkaSink(topic, brokers)
val query =
streamingSelectDF
.writeStream
.foreach(writer)
.outputMode("update")
.trigger(ProcessingTime("25 seconds"))
.start()
Reference link