Convert B/W image to signal for Fourier Transform (DFT) - matlab

I am pretty new to signal and image processing.
I attached a picture of what I am supposed to do from a paper (https://iopscience.iop.org/article/10.1088/1361-6501/ab7f79/meta).
Basically, an interferogram is recorded by a CMOS sensor in B/W, then each vertical and horizontal pixel line is taken singularly and "associated" with a signal representing the intensity of light reaching the sensor. Then, the signals are Fourier-transformed to extract information about frequency and phase (to unwrap using).
I have understood the final passage for the DFT of the signal, but I am stuck when I have to take the pixel line and the signal associated with it.
Ideally, in Matlab the workflow would be:
extract each pixel line
assign a "colormap" to the line (white = 1, black = 0, all the other shades in between?)
build my signal interpolating the values of the pixels
DFT the signal to extract frequency and phase
Is there a compact way to do so?
So far I managed to do this:
I imported the image of the interferogram (248x320 pixels, just a snapshot from the paper) and for the 124th horizontal line I obtained the signal, frequency and phase.

Related

Polar 2D Interpolation

Say we are creating a calibration lookup table for a device, shown in the plot below. The theta represents different phase values, and the r represents different magnitude values. The calibration setpoints are shown in blue circles, and are taken at every N degrees of phase and N values of magnitude. For every setpoint, we measure the actual device output and obtain the red coordinates, which describe the resulting phase and magnitude. Thus for every blue setpoint, we observe the device outputting red points.
The question now is, I want to set the device to a value of the green circle with orange ring. How do I calculate what the setpoint should be (green circle) to set the device to in order to obtain green/orange on the output?
The issue I am having is that for every 2D setpoint (mag, phase), the resultant data is 2D (mag, phase). In addition, magnitude and phase are not independent variables (fixing phase and changing only magnitude, the resulting phase output does change).
So what basic math/logic should I use to perform the necessary interpolation?
How about treating this like a registration problem. For example, you could use an affine transformation as the model between the measured and calibrated points? For each cell (i.e., the 4 blue points in your figure) compute a least squares estimate of the affine transformation between the blue and red points. Then for new points apply the corresponding transformation to get the green point you want. Here and here are some SO questions that discuss this. In addition, you might consider estimating and applying the transformation directly in magnitude/phase space.

abs function for fft2 is not working in MATLAB

i am trying to plot the figure of FFT magnitude of an image using the following code in the command window:
a= imread('lena','png')
figure,imshow(a)
ffta=fft2(a)
fftshift1=fftshift(ffta)
magnitude=abs(fftshift1)
figure,imshow(magnitude),title('magnitude')
However, the figure with the title magnitude shows nothing, even though MATLAB shows that it has computed abs() on fftshift. The figure is still empty, and there is no error. Also, why do we need to compute the phase shift before magnitude?
The reason why this is probably happening is because of the following things:
When you take the 2D fft of your image, it will produce a double valued result, even though your image is mostly unsigned 8-bit integer. MATLAB assumes that double formatted images have their intensities / colours between [0,1]. By doing imshow on just the magnitude itself, you will most likely get an entirely white image because I suspect a good majority of the FFT coefficients are bigger than 1. This is probably the blank figure that you're referring to.
Even if you rescale the magnitude so that it is between [0,1], the DC coefficient will be so large that if you try to display the image, you'll only see a white dot in the middle while every other component will be black.
As a side note, the reason why you are doing fftshift is because by default, MATLAB assumes that the origin of the FFT for 2D is located at the top left corner. Doing fftshift will allow the origin to be in the middle, which is what we would intuitively expect of the 2D FFT.
In order to remedy this situation, I would suggest doing a log transformation on the FFT coefficients so you can visually see the results. I would also normalize the coefficients once you log transform it so that they go between [0,1]. Do not actually modify the FFT coefficients as this would be improper. You need to leave them the same way that it is because if you intend to do any processing on the spectrum, you would start by working on the raw image. Doing filter design or anything of that sort will require the raw spectrum, as the final filter will depend on these coefficients untouched. Unless you actually want to do a log operation as part of your pipeline, then leave these coefficients as is. As such, this can be done through the following MATLAB code:
imshow(log(1 + magnitude), []);
I'm going to show an example, using your code that you have provided but using another image as you haven't provided one here. I'm going to use the cameraman.tif image that's part of the MATLAB system path. As such:
a= imread('cameraman.tif');
figure,imshow(a);
ffta=fft2(a);
fftshift1=fftshift(ffta);
magnitude=abs(fftshift1);
figure;
imshow(log(1 + magnitude), []); %// NEW
title('magnitude')
This is what I get:
As you can see, the magnitude is displayed more nicely. Also, the DC coefficient is in the middle of the spectrum thanks to fftshift.
If you want to apply this for colour images, fft2 should still work. It will apply the 2D fft to each colour plane by itself. However, if you want this to work, you'll not only need to take the log transform, but you'll also need to normalize each plane separately. You have to do this because if we tried doing the imshow command we did earlier, it would normalize it so that the greatest value in the spectrum of the colour image gets normalized to 1. This will inevitably produce that same small dot effect that we talked about earlier.
Let's try a colour image that's built-in to MATLAB: onion.png. We will use the same code that you used above, but we need an additional step of normalizing each colour plane by itself. As such:
a = imread('onion.png');
figure,imshow(a);
ffta=fft2(a);
fftshift1=fftshift(ffta);
magnitude=abs(fftshift1);
logMag = log(1 + magnitude); %// New
for c = 1 : size(a,3); %// New - normalize each plane
logMag(:,:,c) = mat2gray(logMag(:,:,c));
end
figure; imshow(logMag); title('magnitude');
Note that I had to loop through each colour plane and use mat2gray to normalize each plane to [0,1]. Also, I had to create a new variable called logMag because I have to modify each colour plane individually, and you can't do this with a single imshow call.
With this, these are the results I get:
What's different with this spectrum is that we are applying the FFT to each colour plane separately, and so you'll see a whole bunch of colour spatters because for each location in this image, we are visualizing a linear combination of components from the red, green and blue channels. For each location, we have a value in between [0,1] for each colour plane, and the combination of these give you a colour at this location. You could say that darker colours are for locations that have a relatively low magnitude for at least one of the colour channels, while locations that are brighter have a relatively high magnitude for at least one of the colour channels.
Hope this helps!
Can't be sure about your version of "lena.png", but if it's a color RGB picture, you need to convert it first to grayscale, or at least select which RGB plane you want to examine.
I.e., the following works for http://optipng.sourceforge.net/pngtech/img/lena.png (color png):
clear; close all;
a = imread('lena','png');
ag = rgb2gray(a);
ag = im2double(ag);
figure(1);
imshow(ag);
F = fftshift( fft2(ag) ); % also try fft2(ag, N, N) where N < image size. Say N=128.
magnitude=abs(F);
figure(2);
imshow(magnitude);

How to make "well" a ridge-shape from a given 2d line? (gaussian, matlab)

My goal is to make a ridge(mountain)-like shape from the given line. For that purpose, I applied the gaussian filter to the given line. In this example below, one line is vertical and one has some slope. (here, background values are 0, line pixel values are 1.)
Given line:
Ridge shape:
When I applied gaussian filter, the peak heights are different. I guess this results from the rasterization problem. The image matrix itself is discrete integer space. The gaussian filter is actually not exactly circular (s by s matrix). Two lines also suffer from rasterization.
How can I get two same-peak-height nice-looking ridges(mountains)?
Is there more appropriate way to apply the filter?
Should I make a larger canvas(image matrix) and then reduce the canvas by interpolation? Is it a good way?
Moreover, I appreciate if you can suggest a way to make ridges with a certain peak height. When using gaussian filter, what we can do is deciding the size and sigma of the filter. Based on those parameters, the peak height varies.
For information, image matrix size is 250x250 here.
You can give a try to distance transform. Your image is a binary image (having only two type of values, 0 and 1). Therefore, you can generate similar effects with distance transform.
%Create an image similar to yours
img=false(250,250);
img(sub2ind(size(img),180:220,linspace(20,100,41)))=1;
img(1:200,150)=1;
%Distance transform
distImg=bwdist(img);
distImg(distImg>5)=0; %5 is set manually to achieve similar results to yours
distImg=5-distImg; %Get high values for the pixels inside the tube as shown
%in your figure
distImg(distImg==5)=0; %Making background pixels zero
%Plotting
surf(1:size(img,2),1:size(img,1),double(distImg));
To get images with certain peak height, you can change the threshold of 5 to a different value. If you set it to 10, you can get peaks with height equal to the next largest value present in the distance transform matrix. In case of 5 and 10, I found it to be around 3.5 and 8.
Again, if you want to be exact 5 and 10, then you may multiply the distance transform matrix with the normalization factor as follows.
normalizationFactor=(newValue-minValue)/(maxValue-minValue) %self-explanatory
Only disadvantage I see is, I don't get a smooth graph as you have. I tried with Gaussian filter too, but did not get a smooth graph.
My result:

Decomposing an image into two frequency components using DCT?

I am a beginner in digital image processing field, recently I am working on a project where I have to decompose an image into two frequency components namely (low and high) using DCT. I searched a lot on web and I found that MATLAB has a built-in function for Discrete Cosine Transform which is used like this:
dct_img = dct2(img);
where img is input image and dct_img is resultant DCT of img.
Question
My question is, "How can I decompose the dct_img into two frequency components namely low and high frequency components".
As you've mentioned, dct2 and idct2 will do most of the job for you. The question that remains is then: What is high frequency and what is low frequency content? The coefficients after the 2 dimensional transform will actually represent two frequencies each (one in x- and one in y-direction). The following figure shows the bases for each coefficient in an 8x8 discrete cosine transform:
Therefore, that question of low vs. high can be answered in different ways. A common way, which is also used in the JPEG encoding, proceeds diagonally from zero-frequency downto the max as shown above. As we can see in the following example that is mostly motivated because natural images are largely located in the "top left" corner of "low" frequencies. It is certainly worth looking at the result of dct2 and play around with the actual choice of your regions for high and low.
In the following I'm dividing the spectrum diagonally and also plotting the DCT coefficients - in logarithmic scale because otherwise we would just see one big peak around (1,1). In the example I'm cutting far above half of the coefficients (adjustable with cutoff) we can see that the high-frequency part ("HF") still contains some relevant image information. If you set cutoff to 0 or below only noise of small amplitude will be left.
%// Load an image
Orig = double(imread('rice.png'));
%// Transform
Orig_T = dct2(Orig);
%// Split between high- and low-frequency in the spectrum (*)
cutoff = round(0.5 * 256);
High_T = fliplr(tril(fliplr(Orig_T), cutoff));
Low_T = Orig_T - High_T;
%// Transform back
High = idct2(High_T);
Low = idct2(Low_T);
%// Plot results
figure, colormap gray
subplot(3,2,1), imagesc(Orig), title('Original'), axis square, colorbar
subplot(3,2,2), imagesc(log(abs(Orig_T))), title('log(DCT(Original))'), axis square, colorbar
subplot(3,2,3), imagesc(log(abs(Low_T))), title('log(DCT(LF))'), axis square, colorbar
subplot(3,2,4), imagesc(log(abs(High_T))), title('log(DCT(HF))'), axis square, colorbar
subplot(3,2,5), imagesc(Low), title('LF'), axis square, colorbar
subplot(3,2,6), imagesc(High), title('HF'), axis square, colorbar
(*) Note on tril: The lower triangle-function operates with respect to the mathematical diagonal from top-left to bottom-right, since I want the other diagonal I'm flipping left-right before and afterwards.
Also note that this kind of operations are not usually applied to entire images, but rather to blocks of e.g. 8x8. Have a look at blockproc and this article.
An easy example:
I2 = dct_img;
I2(8:end,8:end) = 0;
I3 = idct2(I2);
imagesc(I3)
I3 can be seen as the image after low pass filter (the low frequency components), then idct2(dct_img - I2) can be viewed as high frequency.

Artifacts in image after super resolution using delaunay triangulation in MATLAB

i have to do super resolution of two low resolution images to obtain a high resolution image.
2nd image is taken as base image and the first image is registered with respect to it . i used SURF algorithm for image registration . A Delaunay triangulation is constructed over the points using a built-in MATLAB delaunay function . The HR grid of size is constructed for a prespecified resolution enhancement factor R Then HR algorithm for interpolating the pixel values on the HR grid is summarized next.
HR Algorithm Steps: 1. Construct the Delaunay triangulation over the set of scattered vertices in the irregularly sampled raster formed from the LR frames.
Estimate the gradient vector at each vertex of the triangulation by calculating the unit normal vector of neighbouring vector using cross product method.Sum of the unit normal vector of each triangle multiplied by its area is divided by summation of area of all neighbouring triangles to get the vertex normal.
Approximate each triangle patch in the triangulation by a continuous and, possibly, a continuously differentiable surface, subject to some smoothness constraint. Bivariate polynomials or splines could be the approximants as explained below.
Set the resolution enhancement factor along the horizontal and vertical directions and then calculate the pixel value at each regularly spaced HR grid point to construct the initial HR image
now i have the results shown below
now for one kind of data set i get this result that has a few pixels black and wite in a random manner for the other type i get thin parallel lines all over image after super resolution the results are attached
any one can tell me the reason, i have figured out may be its demosaicing but i am not sure,because i dnt have much understanding of it , moreover can it be a bug in my code but it behaves different for different images, i have increased the size by super resolution twice.