This is a subsequent question to a previous reactive kafka issue (Issue while sending the Flux of data to the reactive kafka).
I am trying to send some log records to the kafka using the reactive approach. Here is the reactive code sending messages using reactive kafka.
public class LogProducer {
private final KafkaSender<String, String> sender;
public LogProducer(String bootstrapServers) {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ProducerConfig.CLIENT_ID_CONFIG, "log-producer");
props.put(ProducerConfig.ACKS_CONFIG, "all");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
SenderOptions<String, String> senderOptions = SenderOptions.create(props);
sender = KafkaSender.create(senderOptions);
}
public void sendMessages(String topic, Flux<Logs.Data> records) throws InterruptedException {
AtomicInteger sentCount = new AtomicInteger(0);
sender.send(records
.map(record -> {
LogRecord lrec = record.getRecords().get(0);
String id = lrec.getId();
Thread.sleep(0, 5); // sleep for 5 ns
return SenderRecord.create(new ProducerRecord<>(topic, id,
lrec.toString()), id);
})).doOnNext(res -> sentCount.incrementAndGet()).then()
.doOnError(e -> {
log.error("[FAIL]: Send to the topic: '{}' failed. "
+ e, topic);
})
.doOnSuccess(s -> {
log.info("[SUCCESS]: {} records sent to the topic: '{}'", sentCount, topic);
})
.subscribe();
}
}
public class ExecuteQuery implements Runnable {
private LogProducer producer = new LogProducer("localhost:9092");
#Override
public void run() {
Flux<Logs.Data> records = ...
producer.sendMessages(kafkaTopic, records);
.....
.....
// processing related to the messages sent
}
}
So even when the Thread.sleep(0, 5); is there, sometimes it does not send all messages to kafka and the program exists early printing the SUCCESS message (log.info("[SUCCESS]: {} records sent to the topic: '{}'", sentCount, topic);). Is there any more concrete way to solve this problem. For example, using some kind of callback, so that thread will wait for all messages to be sent successfully.
I have a spring console application and running ExecuteQuery through a scheduler at fixed rate, something like this
public class Main {
private ScheduledExecutorService scheduler = Executors.newSingleThreadScheduledExecutor();
private ExecutorService executor = Executors.newFixedThreadPool(POOL_SIZE);
public static void main(String[] args) {
QueryScheduler scheduledQuery = new QueryScheduler();
scheduler.scheduleAtFixedRate(scheduledQuery, 0, 5, TimeUnit.MINUTES);
}
class QueryScheduler implements Runnable {
#Override
public void run() {
// preprocessing related to time
executor.execute(new ExecuteQuery());
// postprocessing related to time
}
}
}
Your Thread.sleep(0, 5); // sleep for 5 ns does not have any value for a main thread to be blocked, so it exits when it needs and your ExecuteQuery may not finish its job yet.
It is not clear how you start your application, but I recommended Thread.sleep() exactly in a main thread to block. To be precise in the public static void main(String[] args) { method impl.
Related
I'm using Reactor Kafka in a Spring Boot Reactive app, with Spring Cloud Sleuth for distributed tracing.
I've setup Sleuth to use a custom propagation key from a header named "traceId".
I've also customized the log format to print the header in my logs, so a request like
curl -H "traceId: 123456" -X POST http://localhost:8084/parallel
will print 123456 in every log anywhere downstream starting from the Controller.
I would now like this header to be propagated via Kafka too. I understand that Sleuth has built-in instrumentation for Kafka too, so the header should be propagated automatically, however I'm unable to get this to work.
From my Controller, I produce a message onto a Kafka topic, and then have another Kafka consumer pick it up for processing.
Here's my Controller:
#RestController
#RequestMapping("/parallel")
public class BasicController {
private Logger logger = Loggers.getLogger(BasicController.class);
KafkaProducerLoadGenerator generator = new KafkaProducerLoadGenerator();
#PostMapping
public Mono<ResponseEntity> createMessage() {
int data = (int)(Math.random()*100000);
return Flux.just(data)
.doOnNext(num -> logger.info("Generating document for {}", num))
.map(generator::generateDocument)
.flatMap(generator::sendMessage)
.doOnNext(result ->
logger.info("Sent message {}, offset is {} to partition {}",
result.getT2().correlationMetadata(),
result.getT2().recordMetadata().offset(),
result.getT2().recordMetadata().partition()))
.doOnError(error -> logger.error("Error in subscribe while sending message", error))
.single()
.map(tuple -> ResponseEntity.status(HttpStatus.OK).body(tuple.getT1()));
}
}
Here's the code that produces messages on to the Kafka topic
#Component
public class KafkaProducerLoadGenerator {
private static final Logger logger = Loggers.getLogger(KafkaProducerLoadGenerator.class);
private static final String bootstrapServers = "localhost:9092";
private static final String TOPIC = "load-topic";
private KafkaSender<Integer, String> sender;
private static int documentIndex = 0;
public KafkaProducerLoadGenerator() {
this(bootstrapServers);
}
public KafkaProducerLoadGenerator(String bootstrapServers) {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ProducerConfig.CLIENT_ID_CONFIG, "load-generator");
props.put(ProducerConfig.ACKS_CONFIG, "all");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
SenderOptions<Integer, String> senderOptions = SenderOptions.create(props);
sender = KafkaSender.create(senderOptions);
}
#NewSpan("generator.sendMessage")
public Flux<Tuple2<DataDocument, SenderResult<Integer>>> sendMessage(DataDocument document) {
return sendMessage(TOPIC, document)
.map(result -> Tuples.of(document, result));
}
public Flux<SenderResult<Integer>> sendMessage(String topic, DataDocument document) {
ProducerRecord<Integer, String> producerRecord = new ProducerRecord<>(topic, document.getData(), document.toString());
return sender.send(Mono.just(SenderRecord.create(producerRecord, document.getData())))
.doOnNext(record -> logger.info("Sent message to partition={}, offset={} ", record.recordMetadata().partition(), record.recordMetadata().offset()))
.doOnError(e -> logger.error("Error sending message " + documentIndex, e));
}
public DataDocument generateDocument(int data) {
return DataDocument.builder()
.header("Load Data")
.data(data)
.traceId("trace"+data)
.timestamp(Instant.now())
.build();
}
}
My consumer looks like this:
#Component
#Scope(scopeName = ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class IndividualConsumer {
private static final Logger logger = Loggers.getLogger(IndividualConsumer.class);
private static final String bootstrapServers = "localhost:9092";
private static final String TOPIC = "load-topic";
private int consumerIndex = 0;
public ReceiverOptions setupConfig(String bootstrapServers) {
Map<String, Object> properties = new HashMap<>();
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
properties.put(ConsumerConfig.CLIENT_ID_CONFIG, "load-topic-consumer-"+consumerIndex);
properties.put(ConsumerConfig.GROUP_ID_CONFIG, "load-topic-multi-consumer-2");
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, DataDocumentDeserializer.class);
return ReceiverOptions.create(properties);
}
public void setIndex(int i) {
consumerIndex = i;
}
#EventListener(ApplicationReadyEvent.class)
public Disposable consumeMessage() {
ReceiverOptions<Integer, DataDocument> receiverOptions = setupConfig(bootstrapServers)
.subscription(Collections.singleton(TOPIC))
.addAssignListener(receiverPartitions -> logger.debug("onPartitionsAssigned {}", receiverPartitions))
.addRevokeListener(receiverPartitions -> logger.debug("onPartitionsRevoked {}", receiverPartitions));
Flux<ReceiverRecord<Integer, DataDocument>> messages = Flux.defer(() -> {
KafkaReceiver<Integer, DataDocument> receiver = KafkaReceiver.create(receiverOptions);
return receiver.receive();
});
Consumer<? super ReceiverRecord<Integer, DataDocument>> acknowledgeOffset = record -> record.receiverOffset().acknowledge();
return messages
.publishOn(Schedulers.newSingle("Parallel-Consumer"))
.doOnError(error -> logger.error("Error in the reactive chain", error))
.delayElements(Duration.ofMillis(100))
.doOnNext(record -> {
logger.info("Consumer {}: Received from partition {}, offset {}, data with index {}",
consumerIndex,
record.receiverOffset().topicPartition(),
record.receiverOffset().offset(),
record.value().getData());
})
.doOnNext(acknowledgeOffset)
.doOnError(error -> logger.error("Error receiving record", error))
.retryBackoff(100, Duration.ofSeconds(5), Duration.ofMinutes(5))
.subscribe();
}
}
I would expect Sleuth to automatically carry over the built-in Brave trace and the custom headers to the consumer, so that the trace covers the entire transaction.
However I have two problems.
The generator bean doesn't get the same trace as the one in the Controller. It uses a different (and new) trace for every message sent.
The trace isn't propagated from Kafka producer to Kafka consumer.
I can resolve #1 above by replacing the generator bean with a simple Java class and instantiating it in the controller. However that means I can't autowire other dependencies, and in any case it doesn't solve #2.
I am able to load an instance of the bean brave.kafka.clients.KafkaTracing so I know it's being loaded by Spring. However, it doesn't look the instrumentation is working. I inspected the content on Kafka using Kafka Tool, and no headers are populated on any message.
In fact the consumer doesn't have a trace at all.
2020-05-06 23:57:32.898 INFO parallel-consumer:local [123-21922,578c510e23567aec,578c510e23567aec] 8180 --- [reactor-http-nio-3] rja.parallelconsumers.BasicController : Generating document for 23965
2020-05-06 23:57:32.907 INFO parallel-consumer:local [52e02d36b59c5acd,52e02d36b59c5acd,52e02d36b59c5acd] 8180 --- [single-11] r.p.kafka.KafkaProducerLoadGenerator : Sent message to partition=17, offset=0
2020-05-06 23:57:32.908 INFO parallel-consumer:local [123-21922,578c510e23567aec,578c510e23567aec] 8180 --- [single-11] rja.parallelconsumers.BasicController : Sent message 23965, offset is 0 to partition 17
2020-05-06 23:57:33.012 INFO parallel-consumer:local [-,-,-] 8180 --- [parallel-5] r.parallelconsumers.IndividualConsumer : Consumer 8: Received from partition load-topic-17, offset 0, data with index 23965
In the log above, [123-21922,578c510e23567aec,578c510e23567aec] is [custom-trace-header, brave traceId, brave spanId]
What am I missing?
I have implemented a kafka application using consumer api. And I have 2 regression tests implemented with stream api:
To test happy path: by producing data from the test ( into the input topic that the application is listening to) that will be consumed by the application and application will produce data (into the output topic ) that the test will consume and validate against expected output data.
To test error path: behavior is the same as above. Although this time application will produce data into output topic and test will consume from application's error topic and will validate against expected error output.
My code and the regression-test codes are residing under the same project under expected directory structure. Both time ( for both tests) data should have been picked up by the same listener at the application side.
The problem is :
When I am executing the tests individually (manually), each test is passing. However, If I execute them together but sequentially ( for example: gradle clean build ) , only first test is passing. 2nd test is failing after the test-side-consumer polling for data and after some time it gives up not finding any data.
Observation:
From debugging, it looks like, the 1st time everything works perfectly ( test-side and application-side producers and consumers). However, during the 2nd test it seems that application-side-consumer is not receiving any data ( It seems that test-side-producer is producing data, but can not say that for sure) and hence no data is being produced into the error topic.
What I have tried so far:
After investigations, my understanding is that we are getting into race conditions and to avoid that found suggestions like :
use #DirtiesContext(classMode = DirtiesContext.ClassMode.AFTER_EACH_TEST_METHOD)
Tear off broker after each test ( Please see the ".destry()" on brokers)
use different topic names for each test
I applied all of them and still could not recover from my issue.
I am providing the code here for perusal. Any insight is appreciated.
Code for 1st test (Testing error path):
#DirtiesContext(classMode = DirtiesContext.ClassMode.AFTER_EACH_TEST_METHOD)
#EmbeddedKafka(
partitions = 1,
controlledShutdown = false,
topics = {
AdapterStreamProperties.Constants.INPUT_TOPIC,
AdapterStreamProperties.Constants.ERROR_TOPIC
},
brokerProperties = {
"listeners=PLAINTEXT://localhost:9092",
"port=9092",
"log.dir=/tmp/data/logs",
"auto.create.topics.enable=true",
"delete.topic.enable=true"
}
)
public class AbstractIntegrationFailurePathTest {
private final int retryLimit = 0;
#Autowired
protected EmbeddedKafkaBroker embeddedFailurePathKafkaBroker;
//To produce data
#Autowired
protected KafkaTemplate<PreferredMediaMsgKey, SendEmailCmd> inputProducerTemplate;
//To read from output error
#Autowired
protected Consumer<PreferredMediaMsgKey, ErrorCmd> outputErrorConsumer;
//Service to execute notification-preference
#Autowired
protected AdapterStreamProperties projectProerties;
protected void subscribe(Consumer consumer, String topic, int attempt) {
try {
embeddedFailurePathKafkaBroker.consumeFromAnEmbeddedTopic(consumer, topic);
} catch (ComparisonFailure ex) {
if (attempt < retryLimit) {
subscribe(consumer, topic, attempt + 1);
}
}
}
}
.
#TestConfiguration
public class AdapterStreamFailurePathTestConfig {
#Autowired
private EmbeddedKafkaBroker embeddedKafkaBroker;
#Value("${spring.kafka.adapter.application-id}")
private String applicationId;
#Value("${spring.kafka.adapter.group-id}")
private String groupId;
//Producer of records that the program consumes
#Bean
public Map<String, Object> sendEmailCmdProducerConfigs() {
Map<String, Object> results = KafkaTestUtils.producerProps(embeddedKafkaBroker);
results.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
AdapterStreamProperties.Constants.KEY_SERDE.serializer().getClass());
results.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
AdapterStreamProperties.Constants.INPUT_VALUE_SERDE.serializer().getClass());
return results;
}
#Bean
public ProducerFactory<PreferredMediaMsgKey, SendEmailCmd> inputProducerFactory() {
return new DefaultKafkaProducerFactory<>(sendEmailCmdProducerConfigs());
}
#Bean
public KafkaTemplate<PreferredMediaMsgKey, SendEmailCmd> inputProducerTemplate() {
return new KafkaTemplate<>(inputProducerFactory());
}
//Consumer of the error output, generated by the program
#Bean
public Map<String, Object> outputErrorConsumerConfig() {
Map<String, Object> props = KafkaTestUtils.consumerProps(
applicationId, Boolean.TRUE.toString(), embeddedKafkaBroker);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
AdapterStreamProperties.Constants.KEY_SERDE.deserializer().getClass()
.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
AdapterStreamProperties.Constants.ERROR_VALUE_SERDE.deserializer().getClass()
.getName());
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
return props;
}
#Bean
public Consumer<PreferredMediaMsgKey, ErrorCmd> outputErrorConsumer() {
DefaultKafkaConsumerFactory<PreferredMediaMsgKey, ErrorCmd> rpf =
new DefaultKafkaConsumerFactory<>(outputErrorConsumerConfig());
return rpf.createConsumer(groupId, "notification-failure");
}
}
.
#RunWith(SpringRunner.class)
#SpringBootTest(classes = AdapterStreamFailurePathTestConfig.class)
#ActiveProfiles(profiles = "errtest")
public class ErrorPath400Test extends AbstractIntegrationFailurePathTest {
#Autowired
private DataGenaratorForErrorPath400Test datagen;
#Mock
private AdapterHttpClient httpClient;
#Autowired
private ErroredEmailCmdDeserializer erroredEmailCmdDeserializer;
#Before
public void setup() throws InterruptedException {
Mockito.when(httpClient.callApi(Mockito.any()))
.thenReturn(
new GenericResponse(
400,
TestConstants.ERROR_MSG_TO_CHK));
Mockito.when(httpClient.createURI(Mockito.any(),Mockito.any(),Mockito.any())).thenCallRealMethod();
inputProducerTemplate.send(
projectProerties.getInputTopic(),
datagen.getKey(),
datagen.getEmailCmdToProduce());
System.out.println("producer: "+ projectProerties.getInputTopic());
subscribe(outputErrorConsumer , projectProerties.getErrorTopic(), 0);
}
#Test
public void testWithError() throws InterruptedException, InvalidProtocolBufferException, TextFormat.ParseException {
ConsumerRecords<PreferredMediaMsgKeyBuf.PreferredMediaMsgKey, ErrorCommandBuf.ErrorCmd> records;
List<ConsumerRecord<PreferredMediaMsgKeyBuf.PreferredMediaMsgKey, ErrorCommandBuf.ErrorCmd>> outputListOfErrors = new ArrayList<>();
int attempt = 0;
int expectedRecords = 1;
do {
records = KafkaTestUtils.getRecords(outputErrorConsumer);
records.forEach(outputListOfErrors::add);
attempt++;
} while (attempt < expectedRecords && outputListOfErrors.size() < expectedRecords);
//Verify the recipient event stream size
Assert.assertEquals(expectedRecords, outputListOfErrors.size());
//Validate output
}
#After
public void tearDown() {
outputErrorConsumer.close();
embeddedFailurePathKafkaBroker.destroy();
}
}
2nd test is almost the same in structure. Although this time the test-side-consumer is consuming from application-side-output-topic( instead of error topic). And I named the consumers,broker,producer,topics differently. Like :
#DirtiesContext(classMode = DirtiesContext.ClassMode.AFTER_EACH_TEST_METHOD)
#EmbeddedKafka(
partitions = 1,
controlledShutdown = false,
topics = {
AdapterStreamProperties.Constants.INPUT_TOPIC,
AdapterStreamProperties.Constants.OUTPUT_TOPIC
},
brokerProperties = {
"listeners=PLAINTEXT://localhost:9092",
"port=9092",
"log.dir=/tmp/data/logs",
"auto.create.topics.enable=true",
"delete.topic.enable=true"
}
)
public class AbstractIntegrationSuccessPathTest {
private final int retryLimit = 0;
#Autowired
protected EmbeddedKafkaBroker embeddedKafkaBroker;
//To produce data
#Autowired
protected KafkaTemplate<PreferredMediaMsgKey,SendEmailCmd> sendEmailCmdProducerTemplate;
//To read from output regular topic
#Autowired
protected Consumer<PreferredMediaMsgKey, NotifiedEmailCmd> ouputConsumer;
//Service to execute notification-preference
#Autowired
protected AdapterStreamProperties projectProerties;
protected void subscribe(Consumer consumer, String topic, int attempt) {
try {
embeddedKafkaBroker.consumeFromAnEmbeddedTopic(consumer, topic);
} catch (ComparisonFailure ex) {
if (attempt < retryLimit) {
subscribe(consumer, topic, attempt + 1);
}
}
}
}
Please let me know if I should provide any more information.,
"port=9092"
Don't use a fixed port; leave that out and the embedded broker will use a random port; the consumer configs are set up in KafkaTestUtils to point to the random port.
You shouldn't need to dirty the context after each test method - use a different group.id for each test and a different topic.
In my case the consumer was not closed properly. I had to do :
#After
public void tearDown() {
// shutdown hook to correctly close the streams application
Runtime.getRuntime().addShutdownHook(new Thread(ouputConsumer::close));
}
to resolve.
I am running a simple Kafka Streams program on my eclipse which is running successfully, but it is not able to implement the windowing concept.
I want to process all the messages received in a window of 5 seconds to the output topic. I googled and understand that I need to implement the tumbling window concept. However, I see that the output is sent to the output topic instantly.
What am I doing wrong here? Below is the main method that I am running:
public static void main(String[] args) throws Exception {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-wordcount");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
final StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> source = builder.stream("wc-input");
#SuppressWarnings("deprecation")
KTable<Windowed<String>, Long> counts = source
.flatMapValues(new ValueMapper<String, Iterable<String>>() {
#Override
public Iterable<String> apply(String value) {
return Arrays.asList(value.toLowerCase(Locale.getDefault()).split(" "));
}
})
.groupBy(new KeyValueMapper<String, String, String>() {
#Override
public String apply(String key, String value) {
return value;
}
})
.count(TimeWindows.of(10000L)
.until(10000L),"Counts");
// need to override value serde to Long type
counts.to("wc-output");
final Topology topology = builder.build();
final KafkaStreams streams = new KafkaStreams(topology, props);
final CountDownLatch latch = new CountDownLatch(1);
// attach shutdown handler to catch control-c
Runtime.getRuntime().addShutdownHook(new Thread("streams-wordcount-shutdown-hook") {
#Override
public void run() {
streams.close();
latch.countDown();
}
});
try {
streams.start();
long windowSizeMs = TimeUnit.MINUTES.toMillis(50000); // 5 * 60 * 1000L
TimeWindows.of(windowSizeMs);
TimeWindows.of(windowSizeMs).advanceBy(windowSizeMs);
latch.await();
} catch (Throwable e) {
System.exit(1);
}
System.exit(0);
}
Windowing does not mean "one output" per window. If you want to get only one output per window, you want so use suppress() on the result KTable.
Compare this article: https://www.confluent.io/blog/watermarks-tables-event-time-dataflow-model/
I've an application where I process a stream and convert it into another. Here is a sample:
public void run(final String... args) {
final Serde<Event> eventSerde = new EventSerde();
final Properties props = streamingConfig.getProperties(
applicationName,
concurrency,
Serdes.String(),
eventSerde
);
props.put(StreamsConfig.PROCESSING_GUARANTEE_CONFIG, EXACTLY_ONCE);
props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG, EventTimestampExtractor.class);
final StreamsBuilder builder = new StreamsBuilder();
KStream<String, Event> eventStream = builder.stream(inputStream);
final Serde<Device> deviceSerde = new DeviceSerde();
eventStream
.map((key, event) -> {
final Device device = modelMapper.map(event, Device.class);
return new KeyValue<>(key, device);
})
.to("device_topic", Produced.with(Serdes.String(), deviceSerde));
final Topology topology = builder.build();
final KafkaStreams streams = new KafkaStreams(topology, props);
streams.start();
}
Here are some details about the app:
Spring Boot 1.5.17
Kafka 2.1.0
Kafka Streams 2.1.0
Spring Kafka 1.3.6
Although a timestamp is set in the messages inside the input stream, I also place an implementation of TimestampExtractor to make sure that a proper timestamp is attached into all messages (as other producers may send messages into the same topic).
Within the code, I receive a stream of events and I basically convert them into different objects and eventually route those objects into different streams.
I'm trying to understand whether the initial timestamp I set is still attached to the messages published into device_topic in this particular case.
The receiving end (of device stream) is like this:
#KafkaListener(topics = "device_topic")
public void onDeviceReceive(final Device device, #Header(KafkaHeaders.RECEIVED_TIMESTAMP) final long timestamp) {
log.trace("[{}] Received device: {}", timestamp, device);
}
Unfortunetely the printed timestamp seems to be wall clock time. Is this the expected behaviour or am I missing something?
Spring Kafka 1.3.x uses a very old 0.11 client; perhaps it doesn't propagate the timestamp. I just tested with Boot 2.1.3 and Spring Kafka 2.2.4 and the timestamp is propagated ok...
#SpringBootApplication
#EnableKafkaStreams
public class So54771130Application {
public static void main(String[] args) {
SpringApplication.run(So54771130Application.class, args);
}
#Bean
public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> {
template.send("so54771130", 0, 42L, null, "baz");
};
}
#Bean
public KStream<String, String> stream(StreamsBuilder builder) {
KStream<String, String> stream = builder.stream("so54771130");
stream
.map((k, v) -> {
System.out.println("Mapping:" + v);
return new KeyValue<>(null, "bar");
})
.to("so54771130-1");
return stream;
}
#Bean
public NewTopic topic1() {
return new NewTopic("so54771130", 1, (short) 1);
}
#Bean
public NewTopic topic2() {
return new NewTopic("so54771130-1", 1, (short) 1);
}
#KafkaListener(id = "so54771130", topics = "so54771130-1")
public void listen(String in, #Header(KafkaHeaders.RECEIVED_TIMESTAMP) long ts) {
System.out.println(in + "#" + ts);
}
}
and
Mapping:baz
bar#42
#kafkaListener consumer is commiting once a specific condition is met. Let us say a topic gets the following data from a producer
"Message 0" at offset[0]
"Message 1" at offset[1]
They are received at the consumer and commited with help of acknowledgement.acknowledge()
then the below messages come to the topic
"Message 2" at offset[2]
"Message 3" at offset[3]
The consumer which is running receive the above data. Here condition fail and the above offsets are not committed.
Even if new data comes at the topic, then also "Message 2" and "Message 3" should be picked up by any consumer from the same consumer group as they are not committed. But this is not happening,the consumer picks up a new message.
When I restart my consumer then I get back Message2 and Message3. This should have happened while the consumers were running.
The code is as follows -:
KafkaConsumerConfig file
enter code here
#Configuration
#EnableKafka
public class KafkaConsumerConfig {
#Bean
KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.setBatchListener(true);
factory.getContainerProperties().setAckMode(AbstractMessageListenerContainer.AckMode.MANUAL_IMMEDIATE);
factory.getContainerProperties().setSyncCommits(true);
return factory;
}
#Bean
public ConsumerFactory<String, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());
}
#Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> propsMap = new HashMap<>();
propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");
propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest");
propsMap.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG,"1");
return propsMap;
}
#Bean
public Listener listener() {
return new Listener();
}
}
Listner Class
public class Listener {
public CountDownLatch countDownLatch0 = new CountDownLatch(3);
private Logger LOGGER = LoggerFactory.getLogger(Listener.class);
static int count0 =0;
#KafkaListener(topics = "abcdefghi", group = "group1", containerFactory = "kafkaListenerContainerFactory")
public void listenPartition0(String data, #Header(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,
#Header(KafkaHeaders.OFFSET) List<Long> offsets, Acknowledgment acknowledgment) throws InterruptedException {
count0 = count0 + 1;
LOGGER.info("start consumer 0");
LOGGER.info("received message via consumer 0='{}' with partition-offset='{}'", data, partitions + "-" + offsets);
if (count0%2 ==0)
acknowledgment.acknowledge();
LOGGER.info("end of consumer 0");
}
How can i achieve my desired result?
That's correct. The offset is a number which is pretty easy to keep tracking in the memory on consumer instance. We need offsets commited for newly arrived consumers in the group for the same partitions. That's why it works as expected when you restart an application or when rebalance happens for the group.
To make it working as you would like you should consider to implement ConsumerSeekAware in your listener and call ConsumerSeekCallback.seek() for the offset you would like to star consume from the next poll cycle.
http://docs.spring.io/spring-kafka/docs/2.0.0.M2/reference/html/_reference.html#seek:
public class Listener implements ConsumerSeekAware {
private final ThreadLocal<ConsumerSeekCallback> seekCallBack = new ThreadLocal<>();
#Override
public void registerSeekCallback(ConsumerSeekCallback callback) {
this.seekCallBack.set(callback);
}
#KafkaListener()
public void listen(...) {
this.seekCallBack.get().seek(topic, partition, 0);
}
}