Raspberry pi pico rfid rc522 (Micropython) - raspberry-pi

I want to read data from mfrc522 (Iduino RFID-rc522) card reader using my RPi Pico but I don't know how to. I was trying to use mfrc522.py MicroPython library made for this purpose. Reader is communicating with Pi over SPI and I connected it to SPI0.
Code on pi:
import time
from machine import I2C, Pin, SPI
from mfrc522 import MFRC522
sck = Pin(6, Pin.OUT)
mosi = Pin(7, Pin.OUT)
miso = Pin(4, Pin.OUT)
spi = SPI(0, baudrate=100000, polarity=0, phase=0, sck=sck, mosi=mosi, miso=miso)
sda = Pin(5, Pin.OUT)
rst = Pin(22, Pin.OUT)
while True:
rdr = MFRC522(spi, sda, rst)
uid = ""
(stat, tag_type) = rdr.request(rdr.REQIDL)
if stat == rdr.OK:
(stat, raw_uid) = rdr.anticoll()
if stat == rdr.OK:
uid = ("0x%02x%02x%02x%02x" % (raw_uid[0], raw_uid[1], raw_uid[2], raw_uid[3]))
print(uid)
And Library:
from machine import Pin, SPI
from os import uname
class MFRC522:
OK = 0
NOTAGERR = 1
ERR = 2
REQIDL = 0x26
REQALL = 0x52
AUTHENT1A = 0x60
AUTHENT1B = 0x61
def __init__(self, spi, cs, rst):
self.spi = spi
self.cs = cs
self.rst = rst
self.rst.value(0)
self.cs.value(1)
self.spi.init()
self.rst.value(1)
self.init()
def _wreg(self, reg, val):
self.cs.value(0)
self.spi.write(b'%c' % int(0xff & ((reg << 1) & 0x7e)))
self.spi.write(b'%c' % int(0xff & val))
self.cs.value(1)
def _rreg(self, reg):
self.cs.value(0)
self.spi.write(b'%c' % int(0xff & (((reg << 1) & 0x7e) | 0x80)))
val = self.spi.read(1)
self.cs.value(1)
return val[0]
def _sflags(self, reg, mask):
self._wreg(reg, self._rreg(reg) | mask)
def _cflags(self, reg, mask):
self._wreg(reg, self._rreg(reg) & (~mask))
def _tocard(self, cmd, send):
recv = []
bits = irq_en = wait_irq = n = 0
stat = self.ERR
if cmd == 0x0E:
irq_en = 0x12
wait_irq = 0x10
elif cmd == 0x0C:
irq_en = 0x77
wait_irq = 0x30
self._wreg(0x02, irq_en | 0x80)
self._cflags(0x04, 0x80)
self._sflags(0x0A, 0x80)
self._wreg(0x01, 0x00)
for c in send:
self._wreg(0x09, c)
self._wreg(0x01, cmd)
if cmd == 0x0C:
self._sflags(0x0D, 0x80)
i = 2000
while True:
n = self._rreg(0x04)
i -= 1
if ~((i != 0) and ~(n & 0x01) and ~(n & wait_irq)):
break
self._cflags(0x0D, 0x80)
if i:
if (self._rreg(0x06) & 0x1B) == 0x00:
stat = self.OK
if n & irq_en & 0x01:
stat = self.NOTAGERR
elif cmd == 0x0C:
n = self._rreg(0x0A)
lbits = self._rreg(0x0C) & 0x07
if lbits != 0:
bits = (n - 1) * 8 + lbits
else:
bits = n * 8
if n == 0:
n = 1
elif n > 16:
n = 16
for _ in range(n):
recv.append(self._rreg(0x09))
else:
stat = self.ERR
return stat, recv, bits
def _crc(self, data):
self._cflags(0x05, 0x04)
self._sflags(0x0A, 0x80)
for c in data:
self._wreg(0x09, c)
self._wreg(0x01, 0x03)
i = 0xFF
while True:
n = self._rreg(0x05)
i -= 1
if not ((i != 0) and not (n & 0x04)):
break
return [self._rreg(0x22), self._rreg(0x21)]
def init(self):
self.reset()
self._wreg(0x2A, 0x8D)
self._wreg(0x2B, 0x3E)
self._wreg(0x2D, 30)
self._wreg(0x2C, 0)
self._wreg(0x15, 0x40)
self._wreg(0x11, 0x3D)
self.antenna_on()
def reset(self):
self._wreg(0x01, 0x0F)
def antenna_on(self, on=True):
if on and ~(self._rreg(0x14) & 0x03):
self._sflags(0x14, 0x03)
else:
self._cflags(0x14, 0x03)
def request(self, mode):
self._wreg(0x0D, 0x07)
(stat, recv, bits) = self._tocard(0x0C, [mode])
if (stat != self.OK) | (bits != 0x10):
stat = self.ERR
return stat, bits
def anticoll(self):
ser_chk = 0
ser = [0x93, 0x20]
self._wreg(0x0D, 0x00)
(stat, recv, bits) = self._tocard(0x0C, ser)
if stat == self.OK:
if len(recv) == 5:
for i in range(4):
ser_chk = ser_chk ^ recv[i]
if ser_chk != recv[4]:
stat = self.ERR
else:
stat = self.ERR
return stat, recv
def select_tag(self, ser):
buf = [0x93, 0x70] + ser[:5]
buf += self._crc(buf)
(stat, recv, bits) = self._tocard(0x0C, buf)
return self.OK if (stat == self.OK) and (bits == 0x18) else self.ERR
def auth(self, mode, addr, sect, ser):
return self._tocard(0x0E, [mode, addr] + sect + ser[:4])[0]
def stop_crypto1(self):
self._cflags(0x08, 0x08)
def read(self, addr):
data = [0x30, addr]
data += self._crc(data)
(stat, recv, _) = self._tocard(0x0C, data)
return recv if stat == self.OK else None
def write(self, addr, data):
buf = [0xA0, addr]
buf += self._crc(buf)
(stat, recv, bits) = self._tocard(0x0C, buf)
if not (stat == self.OK) or not (bits == 4) or not ((recv[0] & 0x0F) == 0x0A):
stat = self.ERR
else:
buf = []
for i in range(16):
buf.append(data[i])
buf += self._crc(buf)
(stat, recv, bits) = self._tocard(0x0C, buf)
if not (stat == self.OK) or not (bits == 4) or not ((recv[0] & 0x0F) == 0x0A):
stat = self.ERR
return stat
My output is absolutely clear and I am not getting any print. Where's my problem?

After straggling with this problem too and posting an unuseful answer which was deleted, i finally managed to get it work. Take a look at this thread at raspberry.org, especially at the GitHub repo from danjperron mentioned there.
I copied the code to my Pico and changed the pin numbers in examples/Pico_read.py, line 11 to reader = MFRC522(spi_id=0,sck=6,miso=4,mosi=7,cs=5,rst=22) to match your used pins. It will print out something like Card detected 0C9B5023 if it works.

The miso is an input to the pico. Try changing the miso pin assignment to miso = Pin(4, Pin.IN, Pin.PULL_DOWN)

Related

How to interact with the Linux PCA953X.c driver? How does one utilize this driver?

I have a PCA9535 GPIO Expander board connected through I²C to my Raspberry Pi. I am able to set the GPIO expander output pins (to high) using the i2cset command:
sudo i2cset 1 0x20 0x02 0xFF // 0x20 (gpio expander), and register 0x02
I came across a kernel driver for the PCA953X and loaded the kernel module gpio-pca953x.ko + modified the /boot/config.txt to include the dts overlay for the expander. When I run i2detect -y 1 (for i2c-1 bus), I can see "UU" at the 0x20 slave address, which corroborates that the driver is managing it.
If I wanted to do something comparable to what I did with the i2cset command programmatically, what API / interface should I use such that I make use of the PCA953X driver that's installed? As you can see from the code below, nothing there suggests that I would be utilizing PCA953X:
int file;
int adapter_nr = 1;
char filename[20];
snprintf(filename, 19, "/dev/i2c-%d", adapter_nr);
file = open(filename, O_RDWR);
if (file < 0) {
exit(1);
}
// Writes 0xFF to register 0x02
uint8_t cmd[2] = {0x02, 0XFF};
struct i2c_msg msg = {
.addr = 0x20,
.flags = 0,
.len = sizeof(cmd)/sizeof(uint8_t),
.buf = cmd
};
struct i2c_rdwr_ioctl_data tx = {
.msgs = &msg,
.nmsgs = 1
};
ioctl(file, I2C_RDWR, &tx);
Is there a programming route that involves utilizing the PCA953X driver? What does having that module actually do?
Thanks to #TomV for pointing it out in the comments. The PCA953X driver provides a new character device in the form of "gpiochipN". In my case, it was gpiochip2. I had not noticed this extra gpiochip in /dev as I was not looking for it. Because this is a character device, I was able to use ioctl to interact with the lines:
int fd, ret;
fd = open("/dev/gpiochip2", O_RDONLY);
if (fd < 0) {
printf("Unable to open: %s", strerror(errno));
return;
}
struct gpiohandle_request req;
req.lineoffsets[0] = 0;
req.lineoffsets[1] = 1;
req.lineoffsets[2] = 2;
req.lineoffsets[3] = 3;
req.lineoffsets[4] = 4;
req.lineoffsets[5] = 5;
req.lineoffsets[6] = 6;
req.lineoffsets[7] = 7;
req.lines = 8;
req.flags = GPIOHANDLE_REQUEST_OUTPUT;
ret = ioctl(fd, GPIO_GET_LINEHANDLE_IOCTL, &req);
if (-1 == ret) {
printf("Failed to get line handle:%s\n", strerror(ret));
close(fd);
return;
}
// Sets all 8 lines to high (equivalent to setting register 0x3 to 0b11111111 or 0xFF)
struct gpiohandle_data data;
data.values[0] = 1;
data.values[1] = 1;
data.values[2] = 1;
data.values[3] = 1;
data.values[4] = 1;
data.values[5] = 1;
data.values[6] = 1;
data.values[7] = 1;
ret = ioctl(req.fd, GPIOHANDLE_SET_LINE_VALUES_IOCTL, &data);
if (-1 == ret) {
printf("Failed to set line value\n");
}
else {
close(req.fd);
}
close(fd);
The above code interacts with the gpiochip2 character device, which is made possible by having the PCA953X installed. Without it, I would have to read and write to the registers through the i2c bus as was posted in my original question.

Google Translate TTS API blocked

Google implemented a captcha to block people from accessing the TTS translate API https://translate.google.com/translate_tts?ie=UTF-8&q=test&tl=zh-TW. I was using it in my mobile application. Now, it is not returning anything. How do I get around the captcha?
Add the qualifier '&client=tw-ob' to the end of your query.
https://translate.google.com/translate_tts?ie=UTF-8&q=test&tl=zh-TW&client=tw-ob
This answer no longer works consistently. Your ip address will be blocked by google temporarily if you abuse this too much.
there are 3 main issues:
you must include "client" in your query string (client=t seems to work).
(in case you are trying to retrieve it using AJAX) the Referer of the HTTP request must be https://translate.google.com/
"tk" field changes for every query, and it must be populated with a matching hash:
tk = hash(q, TKK), where q is the text to be TTSed, and TKK is a var in the global scope when you load translate.google.com: (type 'window.TKK' in the console). see the hash function at the bottom of this reply (calcHash).
to summarize:
function generateGoogleTTSLink(q, tl, tkk) {
var tk = calcHash(q, tkk);
return `https://translate.google.com/translate_tts?ie=UTF-8&total=1&idx=0&client=t&ttsspeed=1&tl=${tl}&tk=${tk}&q=${q}&textlen=${q.length}`;
}
generateGoogleTTSLink('ciao', 'it', '410353.1336369826');
// see definition of "calcHash" in the bottom of this comment.
=> to get your hands on a TKK, you can open Google Translate website, then type "TKK" in developer tools' console (e.g.: "410353.1336369826").
NOTE that TKK value changes every hour, and so, old TKKs might get blocked at some point, and refreshing it may be necessary (although so far it seems like old keys can work for a LONG time).
if you DO wish to periodically refresh TKK, it can be automated pretty easily, but not if you're running your code from the browser.
you can find a full NodeJS implementation here:
https://github.com/guyrotem/google-translate-server.
it exposes a minimal TTS API (query, language), and is deployed to a free Heroku server, so you can test it online if you like.
function shiftLeftOrRightThenSumOrXor(num, opArray) {
return opArray.reduce((acc, opString) => {
var op1 = opString[1]; // '+' | '-' ~ SUM | XOR
var op2 = opString[0]; // '+' | '^' ~ SLL | SRL
var xd = opString[2]; // [0-9a-f]
var shiftAmount = hexCharAsNumber(xd);
var mask = (op1 == '+') ? acc >>> shiftAmount : acc << shiftAmount;
return (op2 == '+') ? (acc + mask & 0xffffffff) : (acc ^ mask);
}, num);
}
function hexCharAsNumber(xd) {
return (xd >= 'a') ? xd.charCodeAt(0) - 87 : Number(xd);
}
function transformQuery(query) {
for (var e = [], f = 0, g = 0; g < query.length; g++) {
var l = query.charCodeAt(g);
if (l < 128) {
e[f++] = l; // 0{l[6-0]}
} else if (l < 2048) {
e[f++] = l >> 6 | 0xC0; // 110{l[10-6]}
e[f++] = l & 0x3F | 0x80; // 10{l[5-0]}
} else if (0xD800 == (l & 0xFC00) && g + 1 < query.length && 0xDC00 == (query.charCodeAt(g + 1) & 0xFC00)) {
// that's pretty rare... (avoid ovf?)
l = (1 << 16) + ((l & 0x03FF) << 10) + (query.charCodeAt(++g) & 0x03FF);
e[f++] = l >> 18 | 0xF0; // 111100{l[9-8*]}
e[f++] = l >> 12 & 0x3F | 0x80; // 10{l[7*-2]}
e[f++] = l & 0x3F | 0x80; // 10{(l+1)[5-0]}
} else {
e[f++] = l >> 12 | 0xE0; // 1110{l[15-12]}
e[f++] = l >> 6 & 0x3F | 0x80; // 10{l[11-6]}
e[f++] = l & 0x3F | 0x80; // 10{l[5-0]}
}
}
return e;
}
function normalizeHash(encondindRound2) {
if (encondindRound2 < 0) {
encondindRound2 = (encondindRound2 & 0x7fffffff) + 0x80000000;
}
return encondindRound2 % 1E6;
}
function calcHash(query, windowTkk) {
// STEP 1: spread the the query char codes on a byte-array, 1-3 bytes per char
var bytesArray = transformQuery(query);
// STEP 2: starting with TKK index, add the array from last step one-by-one, and do 2 rounds of shift+add/xor
var d = windowTkk.split('.');
var tkkIndex = Number(d[0]) || 0;
var tkkKey = Number(d[1]) || 0;
var encondingRound1 = bytesArray.reduce((acc, current) => {
acc += current;
return shiftLeftOrRightThenSumOrXor(acc, ['+-a', '^+6'])
}, tkkIndex);
// STEP 3: apply 3 rounds of shift+add/xor and XOR with they TKK key
var encondingRound2 = shiftLeftOrRightThenSumOrXor(encondingRound1, ['+-3', '^+b', '+-f']) ^ tkkKey;
// STEP 4: Normalize to 2s complement & format
var normalizedResult = normalizeHash(encondingRound2);
return normalizedResult.toString() + "." + (normalizedResult ^ tkkIndex)
}
// usage example:
var tk = calcHash('hola', '409837.2120040981');
console.log('tk=' + tk);
// OUTPUT: 'tk=70528.480109'
You can also try this format :
pass q= urlencode format of your language
(In JavaScript you can use the encodeURI() function & PHP has the rawurlencode() function)
pass tl = language short name (suppose bangla = bn)
Now try this :
https://translate.google.com.vn/translate_tts?ie=UTF-8&q=%E0%A6%A2%E0%A6%BE%E0%A6%95%E0%A6%BE+&tl=bn&client=tw-ob
First, to avoid captcha, you have to set a proper user-agent like: "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:46.0) Gecko/20100101 Firefox/46.0"
Then to not being blocked you must provide a proper token ("tk" get parameter) for each single request.
On the web you can find many different kind of scripts that try to calculate the token after a lot of reverse engineering...but every time the big G change the algorithm you're stuck again, so it's much easier to retrieve your token just observing in deep similar requests to translate page (with your text in the url).
You can read the token time by time grepping "tk=" from the output of this simple code with phantomjs:
"use strict";
var page = require('webpage').create();
var system = require('system');
var args = system.args;
if (args.length != 2) { console.log("usage: "+args[0]+" text"); phantom.exit(1); }
page.onConsoleMessage = function(msg) { console.log(msg); };
page.onResourceRequested = function(request) { console.log('Request ' + JSON.stringify(request, undefined, 4)); };
page.open("https://translate.google.it/?hl=it&tab=wT#fr/it/"+args[1], function(status) {
if (status === "success") { phantom.exit(0); }
else { phantom.exit(1); }
});
so in the end you can get your speech with something like:
wget -U "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:46.0) Gecko/20100101 Firefox/46.0"
"http://translate.google.com/translate_tts?ie=UTF-8&tl=it&tk=52269.458629&q=ciao&client=t" -O ciao.mp3
(token are probably time based so this link may not work tomorrow)
I rewrote Guy Rotem's answer in Java, so if you prefer Java over Javascript, feel free to use:
public class Hasher {
public long shiftLeftOrRightThenSumOrXor(long num, String[] opArray) {
long result = num;
int current = 0;
while (current < opArray.length) {
char op1 = opArray[current].charAt(1); // '+' | '-' ~ SUM | XOR
char op2 = opArray[current].charAt(0); // '+' | '^' ~ SLL | SRL
char xd = opArray[current].charAt(2); // [0-9a-f]
assertError(op1 == '+'
|| op1 == '-', "Invalid OP: " + op1);
assertError(op2 == '+'
|| op2 == '^', "Invalid OP: " + op2);
assertError(('0' <= xd && xd <= '9')
|| ('a' <= xd && xd <='f'), "Not an 0x? value: " + xd);
int shiftAmount = hexCharAsNumber(xd);
int mask = (op1 == '+') ? ((int) result) >>> shiftAmount : ((int) result) << shiftAmount;
long subresult = (op2 == '+') ? (((int) result) + ((int) mask) & 0xffffffff)
: (((int) result) ^ mask);
result = subresult;
current++;
}
return result;
}
public void assertError(boolean cond, String e) {
if (!cond) {
System.err.println();
}
}
public int hexCharAsNumber(char xd) {
return (xd >= 'a') ? xd - 87 : Character.getNumericValue(xd);
}
public int[] transformQuery(String query) {
int[] e = new int[1000];
int resultSize = 1000;
for (int f = 0, g = 0; g < query.length(); g++) {
int l = query.charAt(g);
if (l < 128) {
e[f++] = l; // 0{l[6-0]}
} else if (l < 2048) {
e[f++] = l >> 6 | 0xC0; // 110{l[10-6]}
e[f++] = l & 0x3F | 0x80; // 10{l[5-0]}
} else if (0xD800 == (l & 0xFC00) &&
g + 1 < query.length() && 0xDC00 == (query.charAt(g + 1) & 0xFC00)) {
// that's pretty rare... (avoid ovf?)
l = (1 << 16) + ((l & 0x03FF) << 10) + (query.charAt(++g) & 0x03FF);
e[f++] = l >> 18 | 0xF0; // 111100{l[9-8*]}
e[f++] = l >> 12 & 0x3F | 0x80; // 10{l[7*-2]}
e[f++] = l & 0x3F | 0x80; // 10{(l+1)[5-0]}
} else {
e[f++] = l >> 12 | 0xE0; // 1110{l[15-12]}
e[f++] = l >> 6 & 0x3F | 0x80; // 10{l[11-6]}
e[f++] = l & 0x3F | 0x80; // 10{l[5-0]}
}
resultSize = f;
}
return Arrays.copyOf(e, resultSize);
}
public long normalizeHash(long encondindRound2) {
if (encondindRound2 < 0) {
encondindRound2 = (encondindRound2 & 0x7fffffff) + 0x80000000L;
}
return (encondindRound2) % 1_000_000;
}
/*
/ EXAMPLE:
/
/ INPUT: query: 'hola', windowTkk: '409837.2120040981'
/ OUTPUT: '70528.480109'
/
*/
public String calcHash(String query, String windowTkk) {
// STEP 1: spread the the query char codes on a byte-array, 1-3 bytes per char
int[] bytesArray = transformQuery(query);
// STEP 2: starting with TKK index,
// add the array from last step one-by-one, and do 2 rounds of shift+add/xor
String[] d = windowTkk.split("\\.");
int tkkIndex = 0;
try {
tkkIndex = Integer.valueOf(d[0]);
}
catch (Exception e) {
e.printStackTrace();
}
long tkkKey = 0;
try {
tkkKey = Long.valueOf(d[1]);
}
catch (Exception e) {
e.printStackTrace();
}
int current = 0;
long result = tkkIndex;
while (current < bytesArray.length) {
result += bytesArray[current];
long subresult = shiftLeftOrRightThenSumOrXor(result,
new String[] {"+-a", "^+6"});
result = subresult;
current++;
}
long encondingRound1 = result;
//System.out.println("encodingRound1: " + encondingRound1);
// STEP 3: apply 3 rounds of shift+add/xor and XOR with they TKK key
long encondingRound2 = ((int) shiftLeftOrRightThenSumOrXor(encondingRound1,
new String[] {"+-3", "^+b", "+-f"})) ^ ((int) tkkKey);
//System.out.println("encodingRound2: " + encondingRound2);
// STEP 4: Normalize to 2s complement & format
long normalizedResult = normalizeHash(encondingRound2);
//System.out.println("normalizedResult: " + normalizedResult);
return String.valueOf(normalizedResult) + "."
+ (((int) normalizedResult) ^ (tkkIndex));
}
}

Small differences in SHA1 hashes

A project I am working on uses Apache Shiro as a security framework. Passwords are SHA1 hashed (no salt, no iterations). Login is SSL secured. However, the remaining part of the application is not SSL secured. In this context (no SSL) there should be a form where a user can change the password.
Since it wouldn't be a good idea to transmit it plainly it should be hashed on the client and then transmitted to the server. As the client is GWT (2.3) based, I am trying this library http://code.google.com/p/gwt-crypto, which uses code from bouncycastle.
However, in many cases (not all) the hashes generated by both frameworks differ in 1-4(?) characters.
For instance "happa3" is hashed to
"fe7f3cffd8a5f0512a5f1120f1369f48cd6f47c2"
by both implementations, whereas just "happa" is hashed to
"fb3c3a741b4e07a87d9cb68f3db020d6fbfed00a"
by the Shiro implementation and to
"fb3c3a741b4e07a87d9cb63f3db020d6fbfed00a"
by the gwt-crypto implementation (23rd character differs).
I wonder whether there is a "correct"/standard SHA1 hashing and whether there is a bug in one of the libraries or maybe my usage of them is flawed.
One of my first thoughts was related to different encodings or strange conversions due to different transport mechanisms (RPC vs. Post). To my knowledge though (and what puzzles me most), SHA1 hashes should differ completely with a high probability if there is just a difference of a single bit. So different encodings shouldn't be the issue here.
I am using this code on the client (GWT) for hashing:
String hashed = toHex(createSHA1Hash("password"));
...
private String createSHA1Hash(String passwordString){
SHA1Digest sha1 = new SHA1Digest();
byte[] bytes;
byte[] result = new byte[sha1.getDigestSize()];
try {
bytes = passwordString.getBytes();
sha1.update(bytes, 0, bytes.length);
int val = sha1.doFinal(result, 0);
} catch (UnsupportedEncodingException e) {}
return new String(result);
}
public String toHex(String arg) {
return new BigInteger(1, arg.getBytes()).toString(16);
}
And this on the server (Shiro):
String hashed = new Sha1Hash("password").toHex()
which afaics does something very similar behind the scenes (had a quick view on the source code).
Did I miss something obvious here?
EDIT: Seems like the GWT code does not run natively for some reason (i.e. just in development mode) and silently fails (it does compile, though). Have to find out why...
Edit(2): "int val = sha1.doFinal(result, 0);" is the line that makes trouble, i.e. if present, the whole code does not run natively (JS) but only in dev-mode (with wrong results)
You could test this version:
public class SHA1 {
public static native String calcSHA1(String s) /*-{
//
// A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
// in FIPS 180-1
// Version 2.2 Copyright Paul Johnston 2000 - 2009.
// Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
// Distributed under the BSD License
// See http://pajhome.org.uk/crypt/md5 for details.
//
//
// Configurable variables. You may need to tweak these to be compatible with
// the server-side, but the defaults work in most cases.
//
var hexcase = 0; // hex output format. 0 - lowercase; 1 - uppercase
var b64pad = ""; // base-64 pad character. "=" for strict RFC compliance
//
// These are the functions you'll usually want to call
// They take string arguments and return either hex or base-64 encoded strings
//
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
function hex_hmac_sha1(k, d)
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_sha1(k, d)
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_sha1(k, d, e)
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
//
// Perform a simple self-test to see if the VM is working
//
function sha1_vm_test()
{
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
}
//
// Calculate the SHA1 of a raw string
//
function rstr_sha1(s)
{
return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
}
//
// Calculate the HMAC-SHA1 of a key and some data (raw strings)
//
function rstr_hmac_sha1(key, data)
{
var bkey = rstr2binb(key);
if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
var ipad = Array(16), opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
}
//
// Convert a raw string to a hex string
//
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
}
//
// Convert a raw string to a base-64 string
//
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
//
// Convert a raw string to an arbitrary string encoding
//
function rstr2any(input, encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i, q, x, quotient;
// Convert to an array of 16-bit big-endian values, forming the dividend
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
//
// Repeatedly perform a long division. The binary array forms the dividend,
// the length of the encoding is the divisor. Once computed, the quotient
// forms the dividend for the next step. We stop when the dividend is zero.
// All remainders are stored for later use.
//
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
// Convert the remainders to the output string
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
// Append leading zero equivalents
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
}
//
// Encode a string as utf-8.
// For efficiency, this assumes the input is valid utf-16.
//
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
// Decode utf-16 surrogate pairs
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
// Encode output as utf-8
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
}
//
// Encode a string as utf-16
//
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
}
//
// Convert a raw string to an array of big-endian words
// Characters >255 have their high-byte silently ignored.
//
function rstr2binb(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
//
// Convert an array of big-endian words to a string
//
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
//
// Calculate the SHA-1 of an array of big-endian words, and a bit length
//
function binb_sha1(x, len)
{
// append padding
x[len >> 5] |= 0x80 << (24 - len % 32);
x[((len + 64 >> 9) << 4) + 15] = len;
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
for(var i = 0; i < x.length; i += 16)
{
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for(var j = 0; j < 80; j++)
{
if(j < 16) w[j] = x[i + j];
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
safe_add(safe_add(e, w[j]), sha1_kt(j)));
e = d;
d = c;
c = bit_rol(b, 30);
b = a;
a = t;
}
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
e = safe_add(e, olde);
}
return Array(a, b, c, d, e);
}
//
// Perform the appropriate triplet combination function for the current
// iteration
//
function sha1_ft(t, b, c, d)
{
if(t < 20) return (b & c) | ((~b) & d);
if(t < 40) return b ^ c ^ d;
if(t < 60) return (b & c) | (b & d) | (c & d);
return b ^ c ^ d;
}
//
// Determine the appropriate additive constant for the current iteration
//
function sha1_kt(t)
{
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
(t < 60) ? -1894007588 : -899497514;
}
//
// Add integers, wrapping at 2^32. This uses 16-bit operations internally
// to work around bugs in some JS interpreters.
//
function safe_add(x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
//
// Bitwise rotate a 32-bit number to the left.
//
function bit_rol(num, cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}
return rstr2hex(rstr_sha1(str2rstr_utf8(s)));
}-*/;
}
I'm using it in my client side sha generation and it worked well.

Windows C API for UTF8 to 1252

I'm familiar with WideCharToMultiByte and MultiByteToWideChar conversions and could use these to do something like:
UTF8 -> UTF16 -> 1252
I know that iconv will do what I need, but does anybody know of any MS libs that will allow this in a single call?
I should probably just pull in the iconv library, but am feeling lazy.
Thanks
Windows 1252 is mostly equivalent to latin-1, aka ISO-8859-1: Windows-1252 just has some additional characters allocated in the latin-1 reserved range 128-159. If you are ready to ignore those extra characters, and stick to latin-1, then conversion is rather easy. Try this:
#include <stddef.h>
/*
* Convert from UTF-8 to latin-1. Invalid encodings, and encodings of
* code points beyond 255, are replaced by question marks. No more than
* dst_max_len bytes are stored in the destination array. Returned value
* is the length that the latin-1 string would have had, assuming a big
* enough destination buffer.
*/
size_t
utf8_to_latin1(char *src, size_t src_len,
char *dst, size_t dst_max_len)
{
unsigned char *sb;
size_t u, v;
u = v = 0;
sb = (unsigned char *)src;
while (u < src_len) {
int c = sb[u ++];
if (c >= 0x80) {
if (c >= 0xC0 && c < 0xE0) {
if (u == src_len) {
c = '?';
} else {
int w = sb[u];
if (w >= 0x80 && w < 0xC0) {
u ++;
c = ((c & 0x1F) << 6)
+ (w & 0x3F);
} else {
c = '?';
}
}
} else {
int i;
for (i = 6; i >= 0; i --)
if (!(c & (1 << i)))
break;
c = '?';
u += i;
}
}
if (v < dst_max_len)
dst[v] = (char)c;
v ++;
}
return v;
}
/*
* Convert from latin-1 to UTF-8. No more than dst_max_len bytes are
* stored in the destination array. Returned value is the length that
* the UTF-8 string would have had, assuming a big enough destination
* buffer.
*/
size_t
latin1_to_utf8(char *src, size_t src_len,
char *dst, size_t dst_max_len)
{
unsigned char *sb;
size_t u, v;
u = v = 0;
sb = (unsigned char *)src;
while (u < src_len) {
int c = sb[u ++];
if (c < 0x80) {
if (v < dst_max_len)
dst[v] = (char)c;
v ++;
} else {
int h = 0xC0 + (c >> 6);
int l = 0x80 + (c & 0x3F);
if (v < dst_max_len) {
dst[v] = (char)h;
if ((v + 1) < dst_max_len)
dst[v + 1] = (char)l;
}
v += 2;
}
}
return v;
}
Note that I make no guarantee about this code. This is completely untested.

Comparing set of bits in byte array

I have a byte array, as follows:
byte[] array = new byte[] { 0xAB, 0x7B, 0xF0, 0xEA, 0x04, 0x2E, 0xF3, 0xA9};
The task is to find the quantity of occurrences '0xA' in it.
Could you advise what to do? The answer is 6.
So from your comment, you want the total count of appearances of the bit pattern 1010 in the bytes in your array.
For a given byte b, the count is the sum of
(b & 0x0A) == 0x0A ? 1 : 0
(b & 0x14) == 0x14 ? 1 : 0
(b & 0x28) == 0x28 ? 1 : 0
(b & 0x50) == 0x50 ? 1 : 0
(b & 0xA0) == 0xA0 ? 1 : 0
(left as an exercise: what is this doing?)
Put this in a function, call it for each byte in the array, sum the results.
If you treat the entire array as a single bit-string:
0xAB, 0x7B, 0xF0, 0xEA, 0x04, 0x2E, 0xF3, 0xA9 is then:
10101011 01111011 11110000 11101010 00000100 00101110 11110011 10101001
==== ==== ====
==== ==== ====
This has 1010 occurring 6 times.
If you don't try to match across byte boundaries, you could try something like the following (tested in Perl and translated by hand):
int counter = 0;
for (int i = 0; i < array.length; ++i)
{
for (int bits = 0xA0, mask = 0xF0; bits >= 0x0A; bits >>= 1, mask >>= 1)
{
if ((array[i] & mask) == bits)
++counter;
}
}
To match across byte boundaries, you have to shift the bits in from the next byte. Try something like this (tested in Perl and translated by hand):
int counter = 0;
byte tester = array[0];
for (int i = 1; i < array.length + 1; ++i)
{
byte nextByte = i < array.length ? array[i] : 0;
for (int bit = 0; bit < 8; ++bit)
{
if ((tester & 0xF0) == 0xA0)
++counter;
tester <<= 1;
if ((nextByte & 0x80) != 0)
tester |= 1;
nextByte <<= 1;
}
}
Both programs count 6 as there are no 1010 sequences across byte-boundaries in this example.