I want to fit a histogram to some data using predefined bins. All my data points are between 1 and 10, so I want the bins to start from xmin=1, and end at xmax=10, with a step of 0.5.
I use the following commands:
x = d1.data(:,4); % x is my data
H = histfit(x,10,'normal'); % fits a histogram using 10 bins
However when doing the above, bins are determined automatically per dataset and do not correspond to the edges I want. How can I ensure that the same bin edges are used for all datasets?
If you have access to the Curve Fitting Toolbox, I would suggest another approach that provides the required flexibility. This involves doing the fit "yourself" instead of relying on histfit:
% Generate some data:
rng(66221105) % set random seed, for reproducibility
REAL_SIG = 1.95;
REAL_MU = 5.5;
X = randn(200,1)*REAL_SIG + REAL_MU;
% Define the bin edges you want
EDGES = 1:0.5:10;
% Bin the data according to the predefined edges:
Y = histcounts(X, EDGES);
% Fit a normal distribution using the curve fitting tool:
binCenters = conv(EDGES, [0.5, 0.5], 'valid'); % moving average
[xData, yData] = prepareCurveData( binCenters, Y );
ft = fittype( 'gauss1' );
fitresult = fit( xData, yData, ft );
disp(fitresult); % optional
% Plot fit with data (optional)
figure();
histogram(X, EDGES); hold on; grid on;
plot(fitresult);
Which yields the following plot:
and the fitted model:
General model Gauss1:
fitresult(x) = a1*exp(-((x-b1)/c1)^2)
Coefficients (with 95% confidence bounds):
a1 = 19.65 (17.62, 21.68)
b1 = 5.15 (4.899, 5.401)
c1 = 2.971 (2.595, 3.348)
Related
I am using histograms in Matlab to look at the distribution of some data from my experiments. I want to find the mean distribution (mean height of the bars) from a group of tests then produce an average histogram.
By using this code:
data = zeros(26,31);
for i = 1:length(files6)
x = csvread(files6(i).name);
x = x(1:end,:);
time = x(:,1);
variable = x(:,3);
thing(:,1) = x(:,1);
thing(:,2) = x(:,3);
figure()
binCenter = {0:tbinstep:tbinend 0:varbinstep:varbinend};
hist3(thing, 'Ctrs', binCenter, 'CDataMode','auto','FaceColor','interp');
colorbar
[N,C] = hist3(thing, 'Ctrs', binCenter);
data = data + N;
clearvars x time variable
end
avedata = data / i;
I can find the mean of N, which will be the Z value for the plot (histogram) I want, and I have X,Y (which are the same for all tests) from:
x = 0:tbinstep:tbinend;
y = 0:varbinstep:varbinend;
But how do I bring these together to make the graphical out that shows the average height of the bars? I can't use hist3 again as that will just calculate the distribution of avedata.
AT THE RISK OF STARTING AN XY PROBLEM using bar3 has been suggested, but that asks the question "how do I go from 2 vectors and a matrix to 1 matrix bar3 can handle? I.e. how do I plot x(1), y(1), avedata(1,1) and so on for all the data points in avedata?"
TIA
By looking at hist3 source code in matlab r2014b, it has his own plotting implemented inside that prepares data and plot it using surf method. Here is a function that reproduce the same output highly inspired from the hist3 function with your options ('CDataMode','auto','FaceColor','interp'). You can put this in a new file called hist3plot.m:
function [ h ] = hist3plot( N, C )
%HIST3PLOT Summary of this function goes here
% Detailed explanation goes here
xBins = C{1};
yBins = C{2};
% Computing edges and width
nbins = [length(xBins), length(yBins)];
xEdges = [0.5*(3*xBins(1)-xBins(2)), 0.5*(xBins(2:end)+xBins(1:end-1)), 0.5*(3*xBins(end)-xBins(end-1))];
yEdges = [0.5*(3*yBins(1)-yBins(2)), 0.5*(yBins(2:end)+yBins(1:end-1)), 0.5*(3*yBins(end)-yBins(end-1))];
xWidth = xEdges(2:end)-xEdges(1:end-1);
yWidth = yEdges(2:end)-yEdges(1:end-1);
del = .001; % space between bars, relative to bar size
% Build x-coords for the eight corners of each bar.
xx = xEdges;
xx = [xx(1:nbins(1))+del*xWidth; xx(2:nbins(1)+1)-del*xWidth];
xx = [reshape(repmat(xx(:)',2,1),4,nbins(1)); NaN(1,nbins(1))];
xx = [repmat(xx(:),1,4) NaN(5*nbins(1),1)];
xx = repmat(xx,1,nbins(2));
% Build y-coords for the eight corners of each bar.
yy = yEdges;
yy = [yy(1:nbins(2))+del*yWidth; yy(2:nbins(2)+1)-del*yWidth];
yy = [reshape(repmat(yy(:)',2,1),4,nbins(2)); NaN(1,nbins(2))];
yy = [repmat(yy(:),1,4) NaN(5*nbins(2),1)];
yy = repmat(yy',nbins(1),1);
% Build z-coords for the eight corners of each bar.
zz = zeros(5*nbins(1), 5*nbins(2));
zz(5*(1:nbins(1))-3, 5*(1:nbins(2))-3) = N;
zz(5*(1:nbins(1))-3, 5*(1:nbins(2))-2) = N;
zz(5*(1:nbins(1))-2, 5*(1:nbins(2))-3) = N;
zz(5*(1:nbins(1))-2, 5*(1:nbins(2))-2) = N;
% Plot the bars in a light steel blue.
cc = repmat(cat(3,.75,.85,.95), [size(zz) 1]);
% Plot the surface
h = surf(xx, yy, zz, cc, 'CDataMode','auto','FaceColor','interp');
% Setting x-axis and y-axis limits
xlim([yBins(1)-yWidth(1) yBins(end)+yWidth(end)]) % x-axis limit
ylim([xBins(1)-xWidth(1) xBins(end)+xWidth(end)]) % y-axis limit
end
You can then call this function when you want to plot outputs from Matlab's hist3 function. Note that this can handle non uniform positionning of bins:
close all; clear all;
data = rand(10000,2);
xBins = [0,0.1,0.3,0.5,0.6,0.8,1];
yBins = [0,0.1,0.3,0.5,0.6,0.8,1];
figure()
hist3(data, {xBins yBins}, 'CDataMode','auto','FaceColor','interp')
title('Using hist3')
figure()
[N,C] = hist3(data, {xBins yBins});
hist3plot(N, C); % The function is called here
title('Using hist3plot')
Here is a comparison of the two outputs:
So if I understand your question and code correctly, you are plotting the distribution of multiple experiments' data as histograms, then you want to calculate the average shape of all the previous histograms.
I usually avoid giving approaches the asker isn't explicitly asking for, but for this one I must comment that it is a very strange thing to do. I've never heard of calculating the average shape of multiple histograms before. So just in case, you could simply append all your experiment's data into a single variable, and plot a normalized histogram of that using histogram2. This code outputs a relative frequency histogram. (Other normalization methods)
% Append all data in a single matrix
x = []
for i = 1:length(files6)
x = [x; csvread(files6(i).name)];
end
% Plot normalized bivariate histogram, normalized
xEdges = 0:tbinstep:tbinend;
yEdges = 0:varbinstep:varbinend;
histogram2(x(:,1), x(:,3), xEdges, yEdges, 'Normalize', 'Probability')
Now, if you really are looking to draw the average shape of multiple histograms, then yes, use bar3. Since bar3 doesn't accept an (x,y) value argument, you can follow the other answer, or modify the XTickLabel and YTickLabel property to match whatever your bin range is, afterwards.
... % data = yourAverageData;
% Save axis handle to `h`
h = bar3(data);
% Set property of axis
h.XTickLabels = 0:tbinstep:tbinend;
h.YTickLabels = 0:varbinstep:varbinend;
I have my data in arrays which are exponential like e^(ax+c)+d. I'm trying to draw a fit to them.
a = data1 (:,1);
b = data1 (:,2);
log(b);
p = polyfit (a,log(b),1);
But I don't know what to do now. I found an equation by polyfit and I was hoping to take the exponential of the equation I got from polyfit with
exp (0.5632x+2.435)
But I figured out that it doesn't work like that. Does anyone have any suggestions?
try with nonlinear fitting:
%% PARAMETERS (you need this part)
clear all;
clc, clf;
N = 128; % number of datapoints
Nint = N*10; % number of datapoints for curve interpolation
fun = #(prms,x) prms(4).^(prms(1)*x+prms(2))+prms(3); % write your function
iniPrm = rand(4,1); % find some initial values for the parameters (choose meaningful values for better results)
%% SIMULATE DATA (this is only for testing purposes)
SNR = .01; % signal to noise ratio for simulated data
noise = (rand(1,N)-.5)*SNR; % create some random noise
x = linspace(0,10,N); % create the x axis
y = fun(iniPrm,x) + noise; % simulate a dataset that follows the given function
x = x(:); % reshape as a vector
y = y(:); % reshape as a vector
X = linspace(x(1),x(end),Nint); % interpolate the output to plot it smoothly
plot(x,y,'.r','markersize',10); hold on; % plot the dataset
%% FIT AND INTERPOLATE YOUR MODEL
[out.BETA,out.RESID,out.J,out.COVB,out.MSE] = nlinfit(x,y,fun,iniPrm,[]); % model your data
[out.YPRED,out.DELTA] = nlpredci(fun,X,out.BETA,out.RESID,'Covar',out.COVB); % interpolate your model
out.YPREDLOWCI = out.YPRED - out.DELTA; % find lower confidence intervals of your fitting
out.YPREDUPCI = out.YPRED + out.DELTA; % find upper confidence intervals of your fitting
out.X = X; % store the interpolated X
%% PLOT FITTING
plotCI = #(IO,spec) patch([IO.X(:);flipud(IO.X(:))],[IO.YPREDLOWCI(:);flipud(IO.YPREDUPCI(:))],spec{:}); % create patches: IE: patch(0:10,10:-1:0,ones(10,1)-1,1,{'r','facealpha',0.2})
plot(X,out.YPRED,'-b','linewidth',3);
plotCI(out,{'r','facealpha',.3,'edgealpha',0})
I am new to Matlab and I am struggling plotting the difference between these two graphs (subtract one plot from another) ... Can anyone help me?
% 2D plot of original target locations
X= double(xCoords);
Y= double(yCoords);
originalvalues = hist3([X(:) Y(:)],[30 40]);
imagesc(originalvalues)
contourf(originalvalues)
c= colorbar;
c.Label.String = 'Initial location';
axis equal
axis xy
xlabel('endCoordinatesx');
ylabel('endCoordinatesy');
title('2D Map of Original locations');
% 2D plot of final target locations
Xf= Design.endCoordinatesX;
Yf= Design.endCoordinatesY;
values = hist3(double([Xf(:) Yf(:)],[30 40]));
imagesc(values)
contourf(values)
c= colorbar;
c.Label.String = 'Final location';
axis equal
axis xy
xlabel('endCoordinatesx');
ylabel('endCoordinatesy');
title('2D Map of final locations');
If I understood well your problem, you want to making a third plot representing the difference between the two datasets.
What you have to do is to get common bins for all the histograms you calculate :
% find common centers for the two datasets
[~, centers] = hist3(cat(2,[X(:) ; Xf(:)],...
[Y(:) ; Yf(:)]),...
[30 40]);
% then you can calculate the histogram for each set of data :
originalvalues = hist3([X(:) Y(:) ], centers);
values = hist3([Xf(:) Yf(:)], centers);
% finaly, compute the difference between the two (now the bins are "aligned")
differenceValue = values - originalvalues;
I'm doing Gaussian processes and I calculated a regression per year from a given matrix where each row represents a year , so the code is:
M1 = MainMatrix; %This is the given Matrix
ker =#(x,y) exp(-1013*(x-y)'*(x-y));
[ns, ms] = size(M1);
for N = 1:ns
x = M1(N,:);
C = zeros(ms,ms);
for i = 1:ms
for j = 1:ms
C(i,j)= ker(x(i),x(j));
end
end
u = randn(ms,1);
[A,S, B] = svd(C);
z = A*sqrt(S)*u; % z = A S^.5 u
And I wanna plotting each regression in a Graph 3D as the below:
I know that plot is a ribbon, but I have not idea how can I do that
The desired plot can be generated without the use of ribbon. Just use a surf-plot for all the prices and a fill3-plot for the plane at z=0. The boundaries of the plane are calculated from the actual limits of the figure. Therefore we need to set the limits before plotting the plane. Then just some adjustments are needed to generate almost the same appearance.
Here is the code:
% generate some data
days = (1:100)';
price = days*[0.18,-0.08,0.07,-0.10,0.12,-0.08,0.05];
price = price + 0.5*randn(size(price));
years = 2002+(1:size(price,2));
% prepare plot
width = 0.6;
X = ones(size(price,1),1)*0.5;
X = [-X,X]*width;
figure; hold on;
% plot all 'ribbons'
for i = 1:size(price,2)
h = surf([days,days],X+years(i),[price(:,i),price(:,i)]);
set(h,'MeshStyle','column');
end
% set axis limits
set(gca,'ZLim',[-20,20]);
% plot plane at z=0
limx = get(gca,'XLim');
limy = get(gca,'YLim');
fill3(reshape([limx;limx],1,[]),[flip(limy),limy],zeros(1,4),'g','FaceAlpha',0.2)
% set labels
xlabel('Day of trading')
ylabel('Year')
zlabel('Normalized Price')
% tweak appearance
set(gca,'YTick',years);
set(gca,'YDir','reverse');
view([-38,50])
colormap jet;
grid on;
%box on;
This is the result:
That's a ribbon plot with an additional surface at y=0 which can be drawn with fill3
I have two classes(normally distributed), C1 and C2, each defined by their mean and standard deviation. I want to be able to visualize the pdf plot of a normal distributions and the classification boundary between the two. Currently I have the code to plot the distributions but I'm not sure how to go about plotting the decision boundary. Any ideas would be appreciated. I have included a sample of what I want to plot. 1
Many thanks!
This is what I came up with:
% Generate some example data
mu1 = -0.5; sigma1 = 0.7; mu2 = 0.8; sigma2 = 0.5;
x = linspace(-8, 8, 500);
y1 = normpdf(x, mu1, sigma1);
y2 = normpdf(x, mu2, sigma2);
% Plot it
figure; plot(x, [y1; y2])
hold on
% Detect intersection between curves; choose threshold so you get the whole
% intersection (0.0001 should do unless your sigmas are very large)
ind = y1 .* y2 > 0.0001;
% Find the minimum values in range
minVals = min([y1(ind); y2(ind)]);
if ~isempty(minVals)
area(x(ind), minVals)
end
I don't know if this is the best way to do what you want, but it seems to work.