Scala compilation issue "forward reference extends over definition of value" - scala

Compilation error occurs for the below snippet only when it is method level implementation and error does not occur when it is defined in main. What is the difference ? Scala version used is 2.13.5.
class FibonacciGenerator {
def generate(total: Int): List[Int] = {
val fibSeries: LazyList[Int] = LazyList.cons(1, LazyList.cons(1, fibSeries.zip(fibSeries.tail).map { t => t._1 + t._2 }))
fibSeries.take(total).toList
}
}
Same implementation does not fail below.
object Misc extends App {
val x: LazyList[Int] = LazyList.cons(1, LazyList.cons(1, x.zip(x.tail).map{t => t._1 + t._2}))
println(x)
println(x.take(10).toList)

The difference is that in the latter case you are using objects which are created lazily
An object... is created lazily when it is referenced, like a lazy val.
In the first case it should work if you declare lazy val fibSeries.

Related

Invoke a method on a generic type with scala and reflect package

My question is based on a search that I have made on the following pages (but I am still to new to scala to succeed in what I want to do):
reflection overview
The purpose of my code is to invoke a method from a generic type and not an instance of a known type.
The following demonstrate the idea:
class A {
def process = {
(1 to 1000).foreach(x => x + 10)
}
}
def getTypeTag[T: ru.TypeTag](obj: T) = ru.typeTag[T]
def perf[T: ru.TypeTag](t: T, sMethodName: String): Any = {
val m = ru.runtimeMirror(t.getClass.getClassLoader)
val myType = ru.typeTag[T].tpe
val mn = myType.declaration(ru.newTermName(sMethodName)).asMethod
val im = m.reflect(getTypeTag(t))
val toCall = im.reflectMethod(mn)
toCall()
}
val a = new A
perf(a, "process")
The code compile perfectly (on a worksheet) but give the following stack at execution:
scala.ScalaReflectionException: expected a member of class TypeTagImpl, you provided method A$A11.A$A11.A.process
at scala.reflect.runtime.JavaMirrors$JavaMirror.scala$reflect$runtime$JavaMirrors$JavaMirror$$ErrorNotMember(test-log4j.sc:126)
at scala.reflect.runtime.JavaMirrors$JavaMirror$$anonfun$scala$reflect$runtime$JavaMirrors$JavaMirror$$checkMemberOf$1.apply(test-log4j.sc:221)
at scala.reflect.runtime.JavaMirrors$JavaMirror.ensuringNotFree(test-log4j.sc:210)
at scala.reflect.runtime.JavaMirrors$JavaMirror.scala$reflect$runtime$JavaMirrors$JavaMirror$$checkMemberOf(test-log4j.sc:220)
at scala.reflect.runtime.JavaMirrors$JavaMirror$JavaInstanceMirror.reflectMethod(test-log4j.sc:257)
at scala.reflect.runtime.JavaMirrors$JavaMirror$JavaInstanceMirror.reflectMethod(test-log4j.sc:239)
at #worksheet#.perf(test-log4j.sc:20)
at #worksheet#.get$$instance$$res0(test-log4j.sc:28)
at #worksheet#.#worksheet#(test-log4j.sc:138)
Any idea about how to correct this ?
Many thanks to all
In order to reflect a particular object, you have to pass it to Mirror.reflect(obj: T), and you're passing its typeTag for some reason. To fix, you have to modify perf signature to generate a ClassTag along with a TypeTag, and pass t directly to reflect, like so:
class A {
def process = {
(1 to 1000).foreach(x => x + 10)
println("ok!")
}
}
def perf[T : ClassTag : ru.TypeTag](t: T, sMethodName: String): Any = {
// ^ modified here
val m = ru.runtimeMirror(t.getClass.getClassLoader)
val myType = ru.typeTag[T].tpe
val mn = myType.decl(ru.TermName(sMethodName)).asMethod
val im = m.reflect(t)
// ^ and here
val toCall = im.reflectMethod(mn)
toCall()
}
val a = new A
perf(a, "process")
// ok!
// res0: Any = ()
(Note: I also replaced deprecated declaration and newTermName with recommended alternatives)

Resolving circular dependencies in Scala

I've been experimenting with circular dependencides in Scala.
object A {
val value:Int = 5 * B.value
}
object B {
val value:Int = 3 * A.value
}
object Main extends App{
println(A.value)
println(B.value)
}
execution results with
0
0
But i was expecting an error
When values have circular dependencies, the compiler will not do any inlining and instead generates static initialisers and the initialisation will rely on the class loading order to evaluate the expression. Check this out.
To make it clearer, try addition rather than multiplication.
object A {
val value:Int = 5 + B.value
}
object B {
val value:Int = 3 + A.value
}
object Main extends App{
println("A= "+A.value) // 8
println("B = "+B.value) // 3
}
But if you swap the calls the result will be
object Main extends App{
println("B= "+B.value) // 8
println("A = "+A.value) // 5
}
when i changed val to def or lazy val it results with stack overflow, as i was expecting initially
Exception in thread "main" java.lang.StackOverflowError
at com.experiments.A$.value(Experiments.scala:8)
at com.experiments.B$.value(Experiments.scala:12)
at com.experiments.A$.value(Experiments.scala:8)
at com.experiments.B$.value(Experiments.scala:12)
I guess, it is related with evaluation type, where val has call by value and def and lazy val have call by name. Because of that A.value and B.value expressions are ignored when using val

Some help needed to help the type inferring engine

I've problems understanding where to put type informations in scala, and how to put it. Here I create several sequences of Actors and I don't type them. Even if I had to, I wouldn't know which type of sequence map produces to give them the proper type.
Then later when the compiler yells at me because I'm trying to sum Anys, I've no idea where to begin filling in the gaps.
Here is my code, I tried to minimize it while still letting the necessary info available.
object Actors {
def main(args: Array[String]) {
val array = randomArray(5)
val master = new Master(array, 5)
master.start
}
def randomArray(length: Int): Array[Int] = {
val generator = new Random
new Array[Int](length) map((_:Int) => generator nextInt)
}
}
class Master(array: Array[Int], slavesNumber: Int) extends Actor {
def act () {
val slaves = (1 to slavesNumber).map(_ => new Slave)
slaves.foreach(s => s.start)
val futures = slaves.map(s => s !! Work(array))
val results = awaitAll(3000, futures:_*)
val res2 = results.flatMap(x => x)
println((0 /: res2)(_+_))
}
}
class Slave() extends Actor {
def act () {
Actor.loop {
receive {
case Work(slice) =>
reply((slice :\ 0)(_+_))
}
}
}
}
I'd appreciate too some good pointers towards comprehensive doc on the matter.
The object that are passed between actors are not typed, actors have to filter the object themselves -- as you already do in the Slave actor. As you can see, !! is defined as
def !!(msg: Any): Future[Any]
so there is no type information in the returned Future. Probably the easiest solution is to replace the line var res2 .. with
val res2 = results collect {case Some(y:Int) => y}
this filters out just those Some results that are of type Int.

Inferring result type in continuations

Is it possible to remove some types from the following code:
import util.continuations._
object TrackingTest extends App {
implicit def trackable(x: Int) = new {
def tracked[R] = shift { cf: (Int => (R, Set[Int])) =>
cf(x) match {
case (r, ints) => (r, ints + x)
}
}
}
def track[R](body: => R #cpsParam[(R, Set[Int]), (R, Set[Int])]) = reset {
(body, Set[Int]())
}
val result = track(7.tracked[Int] + 35.tracked[Int])
assert(result == (42, Set(7, 35)))
val differentTypes = track(9.tracked[String].toString)
assert(differentTypes == ("9", Set(9)))
}
track function tracks calls of tracked on Int instances (e.g. 7.tracked).
Is it possible to infer type parameter on tracked implicit, so the following would compile:
track(7.tracked + 35.tracked)
Your question made me think of how continuations can track state. So I adapted that to your case and came up with this:
import util.continuations._
object TrackingTest extends App {
type State = Set[Int]
type ST = State => State
implicit class Tracked(val i: Int) extends AnyVal {
def tracked = shift{ (k: Int=>ST) => (state:State) => k(i)(state + i) }
}
def track[A](thunk: => A#cps[ST]): (A, State) = {
var result: A = null.asInstanceOf[A]
val finalSate = (reset {
result = thunk
(state:State) => state
}).apply(Set[Int]())
(result, finalSate)
}
val result = track(7.tracked + 35.tracked)
assert(result == (42, Set(7, 35)))
val differentTypes = track(9.tracked.toString)
assert(differentTypes == ("9", Set(9)))
}
This is using 2.10.1 but it works fine with 2.9.1 as well provided you replace the 2.10.x implicit value class with:
implicit def tracked(i: Int) = new {
def tracked = shift{ (k: Int=>ST) => (state:State) => k(i)(state + i) }
}
The key change I made is to have tracked not use any type inference, fixing to Int#cps[ST]. The CPS plugin then maps the computation to the right type (like String#cps[ST]) as appropriate. The state is threaded by the continuation returning a State=>State function that takes the current state (the set of ints) and returns the next state. The return type of reset is a function from state to state (of type ST) that will take the initial state and will return the final state.
The final trick is to use a var to capture the result while still keeping the expected type for reset.
While the exact answer to this question can be given only by the authors of the compiler, we can guess it is not possible by giving a look to the continuation plugin source code.
If you look to the source of the continuations you can see this:
val anfPhase = new SelectiveANFTransform() {
val global = SelectiveCPSPlugin.this.global
val runsAfter = List("pickler")
}
val cpsPhase = new SelectiveCPSTransform() {
val global = SelectiveCPSPlugin.this.global
val runsAfter = List("selectiveanf")
}
The anfPhase phase is executed after the pickler phase, and the cpsPhase after selectiveAnf. If you look to SelectiveANFTransform.scala
abstract class SelectiveANFTransform extends PluginComponent with Transform with
TypingTransformers with CPSUtils {
// inherits abstract value `global' and class `Phase' from Transform
import global._ // the global environment
import definitions._ // standard classes and methods
import typer.atOwner // methods to type trees
/** the following two members override abstract members in Transform */
val phaseName: String = "selectiveanf"
If we use scalac -Xshow-phases, we can see the phases during the compilation process:
parser
namer
packageobjects
typer
superaccessors
pickler
refchecks
selectiveanf
liftcode
selectivecps
uncurry
......
As you can see the typer phase is applied before the selectiveAnf and selectiveCps phases. It should be confirmed that type inference occurs in the typer phase, but if this is really the case and it would make sense, it should be now clear why you can't omit the Int type on 7.tracked and 35.tracked.
Now if you are not satisfied yet, you should know that the compiler works by performing a set of transformations on "trees", which you might look, using the following options:
-Xprint: shows your scala code after a certain phase have been executed
-Xprint: -Yshow-trees shows your scala code and the trees after the phase have been executed
-YBrowse: opens a GUI to surf both.

Mixing in a trait dynamically

Having a trait
trait Persisted {
def id: Long
}
how do I implement a method that accepts an instance of any case class and returns its copy with the trait mixed in?
The signature of the method looks like:
def toPersisted[T](instance: T, id: Long): T with Persisted
This can be done with macros (that are officially a part of Scala since 2.10.0-M3). Here's a gist example of what you are looking for.
1) My macro generates a local class that inherits from the provided case class and Persisted, much like new T with Persisted would do. Then it caches its argument (to prevent multiple evaluations) and creates an instance of the created class.
2) How did I know what trees to generate? I have a simple app, parse.exe that prints the AST that results from parsing input code. So I just invoked parse class Person$Persisted1(first: String, last: String) extends Person(first, last) with Persisted, noted the output and reproduced it in my macro. parse.exe is a wrapper for scalac -Xprint:parser -Yshow-trees -Ystop-after:parser. There are different ways to explore ASTs, read more in "Metaprogramming in Scala 2.10".
3) Macro expansions can be sanity-checked if you provide -Ymacro-debug-lite as an argument to scalac. In that case all expansions will be printed out, and you'll be able to detect codegen errors faster.
edit. Updated the example for 2.10.0-M7
It is not possible to achieve what you want using vanilla scala. The problem is that the mixins like the following:
scala> class Foo
defined class Foo
scala> trait Bar
defined trait Bar
scala> val fooWithBar = new Foo with Bar
fooWithBar: Foo with Bar = $anon$1#10ef717
create a Foo with Bar mixed in, but it is not done at runtime. The compiler simply generates a new anonymous class:
scala> fooWithBar.getClass
res3: java.lang.Class[_ <: Foo] = class $anon$1
See Dynamic mixin in Scala - is it possible? for more info.
What you are trying to do is known as record concatenation, something that Scala's type system does not support. (Fwiw, there exist type systems - such as this and this - that provide this feature.)
I think type classes might fit your use case, but I cannot tell for sure as the question doesn't provide sufficient information on what problem you are trying to solve.
Update
You can find an up to date working solution, which utilizes a Toolboxes API of Scala 2.10.0-RC1 as part of SORM project.
The following solution is based on the Scala 2.10.0-M3 reflection API and Scala Interpreter. It dynamically creates and caches classes inheriting from the original case classes with the trait mixed in. Thanks to caching at maximum this solution should dynamically create only one class for each original case class and reuse it later.
Since the new reflection API isn't that much disclosed nor is it stable and there are no tutorials on it yet this solution may involve some stupid repitative actions and quirks.
The following code was tested with Scala 2.10.0-M3.
1. Persisted.scala
The trait to be mixed in. Please note that I've changed it a bit due to updates in my program
trait Persisted {
def key: String
}
2. PersistedEnabler.scala
The actual worker object
import tools.nsc.interpreter.IMain
import tools.nsc._
import reflect.mirror._
object PersistedEnabler {
def toPersisted[T <: AnyRef](instance: T, key: String)
(implicit instanceTag: TypeTag[T]): T with Persisted = {
val args = {
val valuesMap = propertyValuesMap(instance)
key ::
methodParams(constructors(instanceTag.tpe).head.typeSignature)
.map(_.name.decoded.trim)
.map(valuesMap(_))
}
persistedClass(instanceTag)
.getConstructors.head
.newInstance(args.asInstanceOf[List[Object]]: _*)
.asInstanceOf[T with Persisted]
}
private val persistedClassCache =
collection.mutable.Map[TypeTag[_], Class[_]]()
private def persistedClass[T](tag: TypeTag[T]): Class[T with Persisted] = {
if (persistedClassCache.contains(tag))
persistedClassCache(tag).asInstanceOf[Class[T with Persisted]]
else {
val name = generateName()
val code = {
val sourceParams =
methodParams(constructors(tag.tpe).head.typeSignature)
val newParamsList = {
def paramDeclaration(s: Symbol): String =
s.name.decoded + ": " + s.typeSignature.toString
"val key: String" :: sourceParams.map(paramDeclaration) mkString ", "
}
val sourceParamsList =
sourceParams.map(_.name.decoded).mkString(", ")
val copyMethodParamsList =
sourceParams.map(s => s.name.decoded + ": " + s.typeSignature.toString + " = " + s.name.decoded).mkString(", ")
val copyInstantiationParamsList =
"key" :: sourceParams.map(_.name.decoded) mkString ", "
"""
class """ + name + """(""" + newParamsList + """)
extends """ + tag.sym.fullName + """(""" + sourceParamsList + """)
with """ + typeTag[Persisted].sym.fullName + """ {
override def copy(""" + copyMethodParamsList + """) =
new """ + name + """(""" + copyInstantiationParamsList + """)
}
"""
}
interpreter.compileString(code)
val c =
interpreter.classLoader.findClass(name)
.asInstanceOf[Class[T with Persisted]]
interpreter.reset()
persistedClassCache(tag) = c
c
}
}
private lazy val interpreter = {
val settings = new Settings()
settings.usejavacp.value = true
new IMain(settings, new NewLinePrintWriter(new ConsoleWriter, true))
}
private var generateNameCounter = 0l
private def generateName() = synchronized {
generateNameCounter += 1
"PersistedAnonymous" + generateNameCounter.toString
}
// REFLECTION HELPERS
private def propertyNames(t: Type) =
t.members.filter(m => !m.isMethod && m.isTerm).map(_.name.decoded.trim)
private def propertyValuesMap[T <: AnyRef](instance: T) = {
val t = typeOfInstance(instance)
propertyNames(t)
.map(n => n -> invoke(instance, t.member(newTermName(n)))())
.toMap
}
private type MethodType = {def params: List[Symbol]; def resultType: Type}
private def methodParams(t: Type): List[Symbol] =
t.asInstanceOf[MethodType].params
private def methodResultType(t: Type): Type =
t.asInstanceOf[MethodType].resultType
private def constructors(t: Type): Iterable[Symbol] =
t.members.filter(_.kind == "constructor")
private def fullyQualifiedName(s: Symbol): String = {
def symbolsTree(s: Symbol): List[Symbol] =
if (s.enclosingTopLevelClass != s)
s :: symbolsTree(s.enclosingTopLevelClass)
else if (s.enclosingPackageClass != s)
s :: symbolsTree(s.enclosingPackageClass)
else
Nil
symbolsTree(s)
.reverseMap(_.name.decoded)
.drop(1)
.mkString(".")
}
}
3. Sandbox.scala
The test app
import PersistedEnabler._
object Sandbox extends App {
case class Artist(name: String, genres: Set[Genre])
case class Genre(name: String)
val artist = Artist("Nirvana", Set(Genre("rock"), Genre("grunge")))
val persisted = toPersisted(artist, "some-key")
assert(persisted.isInstanceOf[Persisted])
assert(persisted.isInstanceOf[Artist])
assert(persisted.key == "some-key")
assert(persisted.name == "Nirvana")
assert(persisted == artist) // an interesting and useful effect
val copy = persisted.copy(name = "Puddle of Mudd")
assert(copy.isInstanceOf[Persisted])
assert(copy.isInstanceOf[Artist])
// the only problem: compiler thinks that `copy` does not implement `Persisted`, so to access `key` we have to specify it manually:
assert(copy.asInstanceOf[Artist with Persisted].key == "some-key")
assert(copy.name == "Puddle of Mudd")
assert(copy != persisted)
}
While it's not possible to compose an object AFTER it's creation, you can have very wide tests to determine if the object is of a specific composition using type aliases and definition structs:
type Persisted = { def id: Long }
class Person {
def id: Long = 5
def name = "dude"
}
def persist(obj: Persisted) = {
obj.id
}
persist(new Person)
Any object with a def id:Long will qualify as Persisted.
Achieving what I THINK you are trying to do is possible with implicit conversions:
object Persistable {
type Compatible = { def id: Long }
implicit def obj2persistable(obj: Compatible) = new Persistable(obj)
}
class Persistable(val obj: Persistable.Compatible) {
def persist() = println("Persisting: " + obj.id)
}
import Persistable.obj2persistable
new Person().persist()