Bidirectional communication of Unix sockets - sockets

I'm trying to create a server that sets up a Unix socket and listens for clients which send/receive data. I've made a small repository to recreate the problem.
The server runs and it can receive data from the clients that connect, but I can't get the server response to be read from the client without an error on the server.
I have commented out the offending code on the client and server. Uncomment both to recreate the problem.
When the code to respond to the client is uncommented, I get this error on the server:
thread '' panicked at 'called Result::unwrap() on an Err value: Os { code: 11, kind: WouldBlock, message: "Resource temporarily unavailable" }', src/main.rs:77:42
MRE Link

Your code calls set_read_timeout to set the timeout on the socket. Its documentation states that on Unix it results in a WouldBlock error in case of timeout, which is precisely what happens to you.
As to why your client times out, the likely reason is that the server calls stream.read_to_string(&mut response), which reads the stream until end-of-file. On the other hand, your client calls write_all() followed by flush(), and (after uncommenting the offending code) attempts to read the response. But the attempt to read the response means that the stream is not closed, so the server will wait for EOF, and you have a deadlock on your hands. Note that none of this is specific to Rust; you would have the exact same issue in C++ or Python.
To fix the issue, you need to use a protocol in your communication. A very simple protocol could consist of first sending the message size (in a fixed format, perhaps 4 bytes in length) and only then the actual message. The code that reads from the stream would do the same: first read the message size and then the message itself. Even better than inventing your own protocol would be to use an existing one, e.g. to exchange messages using serde.

Related

Using "send" to tcp socket/Windows/c

For c send function(blocking way) it's specified what function returns with size of sent bytes when it's received on destinations. I'm not sure that I understand all nuances, also after writing "demo" app with WSAIoctl and WSARecv on server side.
When send returns with less bytes number than asked in buffer-length parameter?
What is considered as "received on destinations"? My first guess it's when it sit on server's OS buffer and server application is notified. My second one it's when server application recv call have read it fully?
Unless you are using a (somewhat exotic) library, a send on a socket will return the number of bytes passed to the TCP buffer successfully, not the number of bytes received by the peer (see Microsoft´s docs for example).
When you are streaming data via a socket, you need to check the bytes effectively accepted into the TCP send buffer. That´s why usually a send command is inside a loop that will issue several sends if needed.
Errors in send are local: for example if the socket is closed by the peer during a sending operation (making your socket invalid) or if the operation times out (TCP buffer not emptying, i. e. peer not receiving data fast enough or some other trouble).
After all send is completed you have no easy way of knowing if the peer received all the bytes you sent. You´ll usually just issue closesocket and make sure that your socket has a proper linger option set (i. e. only close after timeout or sucessfully finishing the send). Alternatively you wait for a confirmation by the peer (for example via a recv that returns zero bytes, indicating that the connection was gracefully closed).
Edit: typo

How is determining body length by closing connection reliable (RFC 2616 4.4.5)

I can't get one thing straight. The RFC 2616 in 4.4.5 states that Message Length can be determined "By the server closing the connection.".
This implies, that it is valid for a server to respond (e.g. returning a large image) with a response, that has no Content-Length in the header, but the client is supposed to keep fetching till the connection is closed and then assume all data has been downloaded.
But how is a client to know for sure that the connection was closed intentionally by the server? A server app could have crashed in the middle of sending the data and the server's OS would most likely send FIN packet to gracefully close the TCP connection with the client.
You are absolutely right, that mechanism is totally unreliable. This is covered in RFC 7230:
Since there is no way to distinguish a successfully completed,
close-delimited message from a partially received message interrupted
by network failure, a server SHOULD generate encoding or
length-delimited messages whenever possible. The close-delimiting
feature exists primarily for backwards compatibility with HTTP/1.0.
Fortunately most of HTTP traffic today are HTTP/1.1, with Content-Length or "Transfer-Encoding" to explicitly define the end of message.
The lesson is that, a message must have it own way of termination; we cannot repurpose the underlying transport layer's EOF as the message's EOF.
On that note, a (well-formed) html document, or a .gif, .avi etc, does define its own termination; we will know if we received an incomplete document. Therefore it is not so much of a problem to transmit it over HTTP/1.0 without Content-Length.
However, for plain text document, javascript, css etc. EOF is used to marked the end of the document, therefore it's problematic over HTTP/1.0.

How to implement Socket.PollAsync in C#

Is it possible to implement the equivalent of Socket.Poll in async/await paradigm (or BeginXXX/EndXXX async pattern)?
A method which would act like NetworkStream.ReadAsync or Socket.BeginReceive but:
leave the data in the socket buffer
complete after the specified interval of time if no data arrived (leaving the socket in connected state so that the polling operation can be retried)
I need to implement IMAP IDLE so that the client connects to the mail server and then goes into waiting state where it received data from the server. If the server does not send anything within 10 minutes, the code sends ping to the server (without reconnecting, the connection is never closed), and starts waiting for data again.
In my tests, leaving the data in the buffer seems to be possible if I tell Socket.BeginReceive method to read no more than 0 bytes, e.g.:
sock.BeginReceive(b, 0, 0, SocketFlags.None, null, null)
However, not sure if it indeed will work in all cases, maybe I'm missing something. For instance, if the remote server closes the connection, it may send a zero-byte packet and not sure if Socket.BeginReceive will act identically to Socket.Poll in this case or not.
And the main problem is how to stop socket.BeginReceive without closing the socket.

Can ZeroMQ be used to accept traditional socket requests?

I'm trying to re-write one of our old Servers using ZeroMQ, for now I have the following Server setup, (which works for Zmq requests):
using (var context = ZmqContext.Create())
using (var server = context.CreateSocket(SocketType.REP)) {
server.Bind("tcp://x.x.x.x:5705");
while (true) { ... }
This kind of setup works fine if I use the Zmq client library to connect context.CreateSocket(SocketType.REQ)
But unfortunately we've got a lot of legacy code that needs to connect to this server and the sockets are created using .net socket libs:
Socket = new Socket(ipAddress.AddressFamily, SocketType.Stream, ProtocolType.Tcp);
Socket.Connect(ipAddress, port);
Is there a way to write a ZeroMQ Server to accept these traditional .net socket connections?
You can achieve this using ZMQ_STREAM sockets.
Please note that since zeroMQ 4.x, the RAW router option has been deprecated for a new ZMQ_STREAM socket type, that works the same way as ROUTER + RAW.
It seems it is bound to evolve, though.
I recently tried ZMQ_STREAM sockets in version 4.0.1.
You can open one, use zmq_rcv until you receive the whole message (you have to check it is whole yourself), or zmq_msg_rcv to let ZeroMQ handle it. You will receive an identifier message part, just like the identifier you would find in ROUTER sockets, directly followed by one ONLY body part. There is no empty delimiter between them like there would be using a REQ Socket talking to a ROUTER Socket. So if you route them, be sure to add it yourself.
Beware though: if there is latency on the other end or if your message exceeds ZeroMQ ZMQ_STREAM buffers (mine are 8192 bytes long), your message can be interpreted by zeroMQ as a series of messages.
In that case, you will receive as many different ZeroMQ messages including both the identifier part and the body part, and it is your job to aggregate them, knowing that if several clients are talking to the STREAM socket, they might get mixed up. I personnally use a hash table using the binary identifier as a key, and delete the entry from the table when I know the message is complete and sent to the next node.
Sending through a ZMQ_STREAM with zmq_msg_send or zmq_send works fine as is.
You probably have to use zmq's RAW socket type (instead of REP) to connect with and read client data without zmq-specific framing.
HTTP Server in C (from Pieter's blog)
http://hintjens.com/blog:42
RAW Socket type info
https://github.com/hintjens/libzmq/commit/777c38ae32a5d1799b3275d38ff8d587c885dd55

perlipc - Interactive Client with IO::Socket - why does it fork?

I'm reading the perlipc perldoc and was confused by the section entitled "Interactive Client with IO::Socket". It shows a client program that connects with some server and sends a message, receives a response, sends another message, receives a response, ad infinitum. The author, Tom Christiansen, states that writing the client as a single-process program would be "much harder", and proceeds to show an implementation that forks a child process dedicated to reading STDIN and sending to the server, while the parent process reads from the server and writes to STDOUT.
I understand how this works, but I don't understand why it wouldn't be much simpler (rather than harder) to write it as a single-process program:
while (1) {
read from STDIN
write to server
read from server
write to STDOUT
}
Maybe I'm missing the point, but it seems to me this is a bad example. Would you ever really design an client/server application protocol where the server might suddenly think of something else to say, interjecting characters onto the terminal where the client is in the middle of typing his next query?
UPDATE 1: I understand that the example permits asynchronicity; what I'm puzzled about is why concurrent I/O between a CLI client and a server would ever be desirable (due to the jumbling of input and output of text on the terminal). I can't think of any CLI app - client/server or not - that does that.
UPDATE 2: Oh!! Duh... my solution only works if there's exactly one line sent from the server for every line sent by the client. If the server can send an unknown number of lines in response, I'd have to sit in a "read from server" loop - which would never end, unless my protocol defined some special "end of response" token. By handling the sending and receiving in separate processes, you leave it up to the user at the terminal to detect "end of response".
(I wonder whether it's the client, or the server, that typically generates a command prompt? I'd always assumed it was the client, but now I'm thinking it makes more sense for it to be the server.)
Because the <STDIN> read request can block, doing the same thing in a single process requires more complicated, asynchronous handling of the input/output functions:
while (1) {
if there is data in STDIN
read from stdin
write to server
if there is data from server
read from server
write to STDOUT
}