Why are calls to `defmacro` evaluating to None? - macros

I was writing the following pieces of code:
(require [hy.contrib.walk [let]])
(defn maybe? [command-text]
(let [splitted (.split command-text " ")]
(= (get splitted 0) "maybe")))
(defn if? [command-text]
(let [splitted (.split command-text " ")]
(+ (get splitted 0) "if")))
... until I realized I was doing something repetitive, so I wanted to factor out the pattern:
(import [hy [HySymbol]])
(defmacro command-dispatcher [command-type]
`(defn ~(HySymbol (+ command-type "?")) [command-text]
(let [splitted (.split command-text " ")]
(= (get splitted 0) ~command-type))))
However, if I evaluate (command-dispatcher "maybe") in HyREPL, I get a None.
=> (command-dispatcher "maybe")
def is_maybe(command_text):
_hyx_letXUffffX3 = {}
_hyx_letXUffffX3['splitted'] = command_text.split(' ')
return _hyx_letXUffffX3['splitted'][0] == 'maybe'
None
This is weird, because a macro should return a HyExpression, not None. What am I missing?

Your macro will not return anything but will define a function, as you can see here
(assert (not (in "is_maybe" (dir))))
(command-dispatcher "maybe")
(assert (in "is_maybe" (dir)))
An issue in your code is that you are using let, which is not available anymore according to documentation, here is a possible way to rewrite it using setv instead:
(defmacro command-dispatcher [command-type]
`(defn ~(HySymbol (+ command-type "?")) [command-text]
(setv splitted (.split command-text " "))
(= (get splitted 0) ~command-type)))
You can then call this function using is_maybe (or maybe?, that's syntactic sugar), eg.
(command-dispatcher "maybe")
(print (maybe? "foo"))
(print (maybe? "maybe foo"))
Will print
False
True

Related

Common LIsp issue with Macros and variables

I have an assignment where I need to write a script using lisp. I am having issues with passing variables
Here is the code. Issues to follow:
(defmacro while (test &rest bodies)
`(do ()
((not ,test))
,# bodies)
)
(defmacro += (var inc)
`(print (eval var))
;(setf (eval var) (+ (eval var) inc))
)
(defmacro iterate (i begin end inc &rest others)
(setf i begin)
(while (<= i (eval end))
;(dolist (item others)
; (eval item)
;)
(print (list 'two i (eval end)))
(+= (eval end) 1)
(setf i (+ i inc))
)
)
(setf n 5)
(iterate i 1 n 1
(print (list 'one i))
(+= n 1)
)
The first issue lies in passing the statements to the iterate macro. When I try to run the commented out dolist, the print statement will throw an error when it comes to the variable i. For some reason I can not get it to print using the macro variable i which has a value, but it seems to want to default to the global variable i which has not been set. I get the error:
- EVAL: variable I has no value
The second issue is when I call the "+=" macro. The value of end in the iterate macro is 5 as passed to the macro by use of the variable N which it is set to 5, however, when I pass it to the "+=" macro using the line "(+= (eval end) 1)" I can not get it to pass the value. I tried removing the eval in the line "(+= (eval end) 1)" and when I try printing it with "(print (eval var))" in the "+=" macro, I get the error
- EVAL: variable END has no value
How would I solve these issues?
Your first macro is basically correct. It generates code.
(defmacro while (test &body body)
`(do ()
((not ,test))
,#body))
One can check it with an example. We expand the macro using example code. The function MACROEXPAND-1 expands the top-level macro exactly once. You need to pass code to the function MACROEXPAND-1:
CL-USER 1 > (macroexpand-1 '(while (< i 10)
(print i)
(incf i)))
(DO NIL ; NIL is the same as ()
((NOT (< I 10)))
(PRINT I)
(INCF I))
T
The generated code is a DO loop. Just like intended.
Thus we can use your macro:
CL-USER 2 > (let ((i 5))
(while (< i 10)
(print i)
(incf i)))
5
6
7
8
9
NIL
Your other macros should be like that
they should generate code
macro expansion of examples should show the right generated code
the generated code should work
Your macros should NOT
be using EVAL
try to compute results other than code

Lisp - Passing unquoted list to macro

I'm currently experimenting with macro's in Lisp and I would like to write a macro which can handle syntax as follows:
(my-macro (args1) (args2))
The macro should take two lists which would then be available within my macro to do further processing. The catch, however, is that the lists are unquoted to mimic the syntax of some real Lisp/CLOS functions. Is this possible?
Currently I get the following error when attempting to do something like this:
Undefined function ARGS1 called with arguments ().
Thanks in advance!
I think you need to show what you have tried to do. Here is an example of a (silly) macro which has an argument pattern pretty much what yours is:
(defmacro stupid-let ((&rest vars) (&rest values) &body forms)
;; Like LET but with a terrible syntax
(unless (= (length vars) (length values))
(error "need exactly one value for each variable"))
(unless (every #'symbolp vars)
(error "not every variable is a symbol"))
`(let ,(mapcar #'list vars values) ,#forms))
Then
> (macroexpand '(stupid-let (a b c) (1 2 3) (+ a b c)))
(let ((a 1) (b 2) (c 3)) (+ a b c))
The above macro depends on defmacro's arglist-destructuring, but you don't have to do that:
(defun proper-list-p (l)
;; elaborate version with an occurs check, quadratic.
(labels ((plp (tail tails)
(if (member tail tails)
nil
(typecase tail
(null t)
(cons (plp (rest tail) (cons tail tails)))
(t nil)))))
(plp l '())))
(defmacro stupid-let (vars values &body forms)
;; Like LET but with a terrible syntax
(unless (and (proper-list-p vars) (proper-list-p values))
(error "need lists of variables and values"))
(unless (= (length vars) (length values))
(error "need exactly one value for each variable"))
(unless (every #'symbolp vars)
(error "not every variable is a symbol"))
`(let ,(mapcar #'list vars values) ,#forms))
As a slightly more useful example, here is a macro which is a bit like the CLOS with-slots / with-accessors macros:
(defmacro with-mindless-accessors ((&rest accessor-specifications) thing
&body forms)
"Use SYMBOL-MACROLET to define mindless accessors for THING.
Each accessor specification is either a symbol which names the symbol
macro and the accessor, or a list (macroname accessorname) which binds
macroname to a symbol macro which calls accessornam. THING is
evaluated once only."
(multiple-value-bind (accessors functions)
(loop for accessor-specification in accessor-specifications
if (symbolp accessor-specification)
collect accessor-specification into acs
and collect accessor-specification into fns
else if (and (proper-list-p accessor-specification)
(= (length accessor-specification) 2)
(every #'symbolp accessor-specification))
collect (first accessor-specification) into acs
and collect (second accessor-specification) into fns
else do (error "bad accessor specification ~A" accessor-specification)
end
finally (return (values acs fns)))
(let ((thingn (make-symbol "THING")))
`(let ((,thingn ,thing))
(symbol-macrolet ,(loop for accessor in accessors
for function in functions
collect `(,accessor (,function ,thingn)))
,#forms)))))
So now we can write this somewhat useless code:
> (with-mindless-accessors (car cdr) (cons 1 2)
(setf cdr 3)
(+ car cdr))
4
And this:
> (let ((l (list 1 2)))
(with-mindless-accessors (second) l
(setf second 4)
l))
(1 4)

creating a macro for iterate in Common Lisp

I am trying to practise creating macros in Common Lisp by creating a simple += macro and an iterate macro. I have managed to create the += macro easily enough and I am using it within my iterate macro, which I am having a couple of issues with. When I try to run my macro with for example
(iterate i 1 5 1 (print (list 'one i)))
(where i is the control variable, 1 is the start value, 5 is the end value, and 1 is the increment value). I receive SETQ: variable X has no value
(defmacro += (x y)
(list 'setf x '(+ x y)))
(defmacro iterate (control beginExp endExp incExp &rest body)
(let ( (end (gensym)) (inc (gensym)))
`(do ( (,control ,beginExp (+= ,control ,inc)) (,end ,endExp) (,inc ,incExp) )
( (> ,control ,end) T)
,# body
)
)
)
I have tried multiple different things to fix it by messing with the , and this error makes me unsure as to whether the problem is with iterate or +=. From what I can tell += works properly.
Check the += expansion to find the error
You need to check the expansion:
CL-USER 3 > (defmacro += (x y)
(list 'setf x '(+ x y)))
+=
CL-USER 4 > (macroexpand-1 '(+= a 1))
(SETF A (+ X Y))
T
The macro expansion above shows that x and y are used, which is the error.
We need to evaluate them inside the macro function:
CL-USER 5 > (defmacro += (x y)
(list 'setf x (list '+ x y)))
+=
CL-USER 6 > (macroexpand-1 '(+= a 1))
(SETF A (+ A 1))
T
Above looks better. Note btw. that the macro already exists in standard Common Lisp. It is called incf.
Note also that you don't need it, because the side-effect is not needed in your iterate code. We can just use the + function without setting any variable.
Style
You might want to adjust a bit more to Lisp style:
no camelCase -> default reader is case insensitive anyway
speaking variable names -> improves readability
documentation string in the macro/function - improves readability
GENSYM takes an argument string -> improves readability of generated code
no dangling parentheses and no space between parentheses -> makes code more compact
better and automatic indentation -> improves readability
the body is marked with &body and not with &rest -> improves automatic indentation of the macro forms using iterate
do does not need the += macro to update the iteration variable, since do updates the variable itself -> no side-effects needed, we only need to compute the next value
generally writing a good macro takes a bit more time than writing a normal function, because we are programming on the meta-level with code generation and there is more to think about and a few basic pitfalls. So, take your time, reread the code, check the expansions, write some documentation, ...
Applied to your code, it now looks like this:
(defmacro iterate (variable start end step &body body)
"Iterates VARIABLE from START to END by STEP.
For each step the BODY gets executed."
(let ((end-variable (gensym "END"))
(step-variable (gensym "STEP")))
`(do ((,variable ,start (+ ,variable ,step-variable))
(,end-variable ,end)
(,step-variable ,step))
((> ,variable ,end-variable) t)
,#body)))
In Lisp the first part - variable, start, end, step - usually is written in a list. See for example DOTIMES. This makes it for example possible to make step optional and to give it a default value:
(defmacro iterate ((variable start end &optional (step 1)) &body body)
"Iterates VARIABLE from START to END by STEP.
For each step the BODY gets executed."
(let ((end-variable (gensym "END"))
(step-variable (gensym "STEP")))
`(do ((,variable ,start (+ ,variable ,step-variable))
(,end-variable ,end)
(,step-variable ,step))
((> ,variable ,end-variable) t)
,#body)))
Let's see the expansion, formatted for readability. We use the function macroexpand-1, which does the macro expansion only one time - not macro expanding the generated code.
CL-USER 10 > (macroexpand-1 '(iterate (i 1 10 2)
(print i)
(print (* i 2))))
(DO ((I 1 (+ I #:STEP2864))
(#:END2863 10)
(#:STEP2864 2))
((> I #:END2863) T)
(PRINT I)
(PRINT (* I 2)))
T
You can see that the symbols created by gensym are also identifiable by their name.
We can also let Lisp format the generated code, using the function pprint and giving a right margin.
CL-USER 18 > (let ((*print-right-margin* 40))
(pprint
(macroexpand-1
'(iterate (i 1 10 2)
(print i)
(print (* i 2))))))
(DO ((I 1 (+ I #:STEP2905))
(#:END2904 10)
(#:STEP2905 2))
((> I #:END2904) T)
(PRINT I)
(PRINT (* I 2)))
I figured it out. Turns out I had a problem in my += macro and a couple of other places in my iterate macro. This is the final working result. I forgot about the , while i was writing the += macro. The other macro declerations where out of order.
(defmacro += (x y)
`(setf ,x (+ ,x ,y)))
(defmacro iterate2 (control beginExpr endExpr incrExpr &rest bodyExpr)
(let ((incr(gensym))(end(gensym)) )
`(do ((,incr ,incrExpr)(,end ,endExpr)(,control ,beginExpr(+= ,control ,incr)))
((> ,control ,end) T)
,# bodyExpr
)
)
)

Creating equivalent to incf as macro-function in lisp

I'm just starting to learn the concept of macro functions.
My teacher has asked us to create a macro function that would function exactly the same way as incf.
Here is an example he has given us for pop
(defmacro mypop (nom)
(list 'prog1 (list 'car nom) (list 'setq nom (list 'cdr nom))) )
Here is the regular function I'm trying to turn into a macro:
(defun iincf (elem &optional num )
(cond
((not num) (setq elem (+ 1 elem)))
(t (setq elem (+ num elem))) ) )
Here is my attempt at turning it into a macro :
(defmacro myincf (elem &optional num )
(list 'cond
((list 'not num) (list 'setq elem (list '+ 1 elem)))
(t (list 'setq elem (list '+ num elem))) ) )
However, I get this error and I don't know why:
*** - system::%expand-form: (list 'not num) should be a lambda expression
Also, I'm not sure whether my function would actually change the value of the variable at the top level.
So here are my 2 questions:
Why do I get this error?
Is the function I'm trying to turn into a macro fine? (if successfully turning it into a macro function, would it do what I intend to?)
PS: I know this exercise would probably infringe many common rules in lisp, but this is just for practice. Thanks! :)
The reason for the error is that your syntax is invalid:
((list ...) ...)
(t (list ...))
The first element should be a function name or a lambda expression, so you would need to change it to something like
(list (list ...) ...)
(list t (list ...))
Although the macro isn't a very good one yet. First of all, the backquote syntax would make the code much more readable. It allows you to write a template where only the specified forms are evaluated. For example, the given MYPOP macro would look like
(defmacro mypop (nom)
`(prog1 (car ,nom)
(setq ,nom (cdr ,nom))))
Only the forms with a comma before them are evaluated. Same with your macro:
(defmacro myincf (elem &optional num)
`(cond
((not ,num) (setq ,elem (+ 1 ,elem)))
(t (setq ,elem (+ ,num ,elem)))))
The COND shouldn't really be part of the expansion though. It should be evaluated during macroexpansion, and only the SETQ form from one of the branches returned.
(defmacro myincf (elem &optional num)
(cond
((not num) `(setq ,elem (+ 1 ,elem)))
(t `(setq ,elem (+ ,num ,elem)))))
The only difference between the two branches is that the first one defaults to 1 for NUM. A simpler way to achieve the same would be to give NUM a default value.
(defmacro myincf (elem &optional (num 1))
`(setq ,elem (+ ,num ,elem)))
Of course, the standard INCF is a bit more complex, since it works for all sorts of places (not just variables) and ensures that the subforms of the place are evaluated only once. However, since the MYPOP example doesn't handle those, I don't think you have to either.
If you want to, a simple way to define such a macro would be
(define-modify-macro myincf (&optional (num 1)) +)
Or you could do the same manually with something like
(defmacro myincf (place &optional (num 1) &environment env)
(multiple-value-bind (dummies vals store setter getter)
(get-setf-expansion place env)
`(let* (,#(mapcar #'list dummies vals)
(,(first store) (+ ,getter ,num)))
,setter)))
But using DEFINE-MODIFY-MACRO would be preferrable in a real program (shorter code, less bugs). You could read about GET-SETF-EXPANSION and DEFINE-MODIFY-MACRO if you're interested.

Is there an existing lisp macro for building up a list?

In Python, I am able to use yield to build up a list without having to define a temporary variable:
def get_chars_skipping_bar(word):
while word:
# Imperative logic which can't be
# replaced with a for loop.
if word[:3] == 'bar':
word = word[3:]
else:
yield foo[0]
foo = foo[1:]
In elisp, I can't see any way of doing this, either built-in or using any pre-existing libraries. I'm forced to manually build a up a list and call nreverse on it. Since this is a common pattern, I've written my own macro:
(require 'dash)
(require 'cl)
(defun replace-calls (form x func)
"Replace all calls to X (a symbol) in FORM,
calling FUNC to generate the replacement."
(--map
(cond
((consp it)
(if (eq (car it) x)
(funcall func it)
(replace-calls it x func)))
(:else it))
form))
(defmacro with-results (&rest body)
"Execute BODY, which may contain forms (yield foo).
Return a list built up from all the values passed to yield."
(let ((results (gensym "results")))
`(let ((,results (list)))
,#(replace-calls body 'yield
(lambda (form) `(push ,(second form) ,results)))
(nreverse ,results))))
Example usage:
(setq foo "barbazbarbarbiz")
(with-results
(while (not (s-equals? "" foo))
;; Imperative logic which can't be replaced with cl-loop's across.
(if (s-starts-with? "bar" foo)
(setq foo (substring foo 3))
(progn
(yield (substring foo 0 1))
(setq foo (substring foo 1))))))
There must be a better way of doing this, or an existing solution, somewhere in elisp, cl.el, or a library.
The Python function is actually a generator. In ANSI Common Lisp, we would usually reach for a lexical closure to simulate a generator, or else us a library to define generators directly, like Pygen. Maybe these approaches can be ported to Emacs Lisp.
AFAIK, people just use push+nreverse like you do. If you want to define your macro in a more robust way (e.g. so it doesn't misfire on something like (memq sym '(yield stop next))) you could do it as:
(defmacro with-results (&rest body)
"Execute BODY, which may contain forms (yield EXP).
Return a list built up from all the values passed to `yield'."
(let ((results (gensym "results")))
`(let ((,results '()))
(cl-macrolet ((yield (exp) `(push ,exp ,results)))
,#body)
(nreverse ,results))))
Maybe something like this:
(setq foo "barbaz")
(cl-loop for i from 0 to (1- (length foo))
collect (string (aref foo i)))
In any case, there's nothing wrong with push and nreverse.
Lisp is different from Python. yield is not used. I also see the use of coroutine-like constructs for this as a mistake. It's the equivalent of the come-from construct. Suddenly routines have multiple context dependent entry points.
In Lisp use functions/closures instead.
In Common Lisp, the LOOP macro allows efficient mappings over vectors. The following code can be abstracted to some mapping function, if preferred:
CL-USER 17 > (defun chars-without-substring (string substring)
(loop with i = 0
while (< i (length string))
when (and (>= (- (length string) i) (length substring))
(string= substring string
:start2 i
:end2 (+ i (length substring))))
do (incf i (length substring))
else
collect (prog1 (char string i) (incf i))))
CHARS-WITHOUT-SUBSTRING
CL-USER 18 > (chars-without-substring "barbazbarbarbiz" "bar")
(#\b #\a #\z #\b #\i #\z)