Exception while wrting dataframe to Kafka using pyspark - kubernetes

I'm trying to create a dataframe new_df and load the DataFrame to Kafka using pyspark. However, I'm getting few exception. Couldn't figure what exactly is the issue. Any help would be appreciated.
>>> dict = [{'name': 'Alice', 'age': 1},{'name': 'Again', 'age': 2}]
>>> df = spark.createDataFrame(dict)
>>> import time
>>> import datetime
>>> from pyspark.streaming.kafka import KafkaUtils
>>> timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')
>>> type(timestamp)
<class 'str'>
>>> from pyspark.sql.functions import lit,unix_timestamp
>>> timestamp
'2017-08-02 16:16:14'
>>> new_df = df.withColumn('time',unix_timestamp(lit(timestamp),'yyyy-MM-dd HH:mm:ss').cast("timestamp"))
>>> new_df.show(truncate = False)
+---+-----+---------------------+
|age|name |time |
+---+-----+---------------------+
|1 |Alice|2017-08-02 16:16:14.0|
|2 |Again|2017-08-02 16:16:14.0|
+---+-----+---------------------+
Now I'm trying to wrtie the dataframe to a Kafka topic
def writeToKafka(outputDF):
outputDF.selectExpr("CAST(time AS STRING) AS key", "to_json(struct(*)) AS value") \
.write \
.format("kafka") \
.option("kafka.bootstrap.servers", "kafka-svc:9092") \
.option("topic", "test_topic") \
.save()
writeToKafka(new_df)
Exceptions(picked from error):
org.apache.spark.SparkException: Job aborted due to stage failure:
org.apache.kafka.common.KafkaException: Failed to construct kafka producer
org.apache.kafka.common.config.ConfigException: No resolvable bootstrap urls given in bootstrap.servers
Full Error:
Py4JJavaError: An error occurred while calling o1811.save. :
org.apache.spark.SparkException: Job aborted due to stage failure:
Task 8 in stage 76.0 failed 1 times, most recent failure: Lost task
8.0 in stage 76.0 (TID 110, localhost, executor driver): org.apache.kafka.common.KafkaException: Failed to construct kafka
producer at
org.apache.kafka.clients.producer.KafkaProducer.(KafkaProducer.java:432)
at
org.apache.kafka.clients.producer.KafkaProducer.(KafkaProducer.java:270)
at
org.apache.spark.sql.kafka010.CachedKafkaProducer$.org$apache$spark$sql$kafka010$CachedKafkaProducer$$createKafkaProducer(CachedKafkaProducer.scala:67)
at
org.apache.spark.sql.kafka010.CachedKafkaProducer$$anon$1.load(CachedKafkaProducer.scala:46)
at
org.apache.spark.sql.kafka010.CachedKafkaProducer$$anon$1.load(CachedKafkaProducer.scala:43)
at
org.spark_project.guava.cache.LocalCache$LoadingValueReference.loadFuture(LocalCache.java:3599)
at
org.spark_project.guava.cache.LocalCache$Segment.loadSync(LocalCache.java:2379) at
org.spark_project.guava.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2342)
at
org.spark_project.guava.cache.LocalCache$Segment.get(LocalCache.java:2257)
at org.spark_project.guava.cache.LocalCache.get(LocalCache.java:4000)
at
org.spark_project.guava.cache.LocalCache.getOrLoad(LocalCache.java:4004)
at
org.spark_project.guava.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4874)
at
org.apache.spark.sql.kafka010.CachedKafkaProducer$.getOrCreate(CachedKafkaProducer.scala:80)
at
org.apache.spark.sql.kafka010.KafkaWriteTask.execute(KafkaWriteTask.scala:44)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply$mcV$sp(KafkaWriter.scala:89)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply(KafkaWriter.scala:89)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply(KafkaWriter.scala:89)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1.apply(KafkaWriter.scala:89)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1.apply(KafkaWriter.scala:87)
at
org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:980)
at
org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:980)
at
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123) at
org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748) Caused by:
org.apache.kafka.common.config.ConfigException: No resolvable
bootstrap urls given in bootstrap.servers at
org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:88)
at
org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:47)
at
org.apache.kafka.clients.producer.KafkaProducer.(KafkaProducer.java:407)
... 31 more
Driver stacktrace: at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1891)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1879)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1878)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at scala.Option.foreach(Option.scala:257) at
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:927)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2112)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2061)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2050)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:738)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061) at
org.apache.spark.SparkContext.runJob(SparkContext.scala:2082) at
org.apache.spark.SparkContext.runJob(SparkContext.scala:2101) at
org.apache.spark.SparkContext.runJob(SparkContext.scala:2126) at
org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:980)
at
org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:978)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:385) at
org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:978) at
org.apache.spark.sql.kafka010.KafkaWriter$.write(KafkaWriter.scala:87)
at
org.apache.spark.sql.kafka010.KafkaSourceProvider.createRelation(KafkaSourceProvider.scala:254)
at
org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:45)
at
org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at
org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at
org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:86)
at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at
org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at
org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at
org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:83)
at
org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:81)
at
org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at
org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at
org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
at
org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
at
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
at
org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
at
org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
at
org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:268)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498) at
py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at
py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at
py4j.Gateway.invoke(Gateway.java:282) at
py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79) at
py4j.GatewayConnection.run(GatewayConnection.java:238) at
java.lang.Thread.run(Thread.java:748) Caused by:
org.apache.kafka.common.KafkaException: Failed to construct kafka
producer at
org.apache.kafka.clients.producer.KafkaProducer.(KafkaProducer.java:432)
at
org.apache.kafka.clients.producer.KafkaProducer.(KafkaProducer.java:270)
at
org.apache.spark.sql.kafka010.CachedKafkaProducer$.org$apache$spark$sql$kafka010$CachedKafkaProducer$$createKafkaProducer(CachedKafkaProducer.scala:67)
at
org.apache.spark.sql.kafka010.CachedKafkaProducer$$anon$1.load(CachedKafkaProducer.scala:46)
at
org.apache.spark.sql.kafka010.CachedKafkaProducer$$anon$1.load(CachedKafkaProducer.scala:43)
at
org.spark_project.guava.cache.LocalCache$LoadingValueReference.loadFuture(LocalCache.java:3599)
at
org.spark_project.guava.cache.LocalCache$Segment.loadSync(LocalCache.java:2379) at
org.spark_project.guava.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2342)
at
org.spark_project.guava.cache.LocalCache$Segment.get(LocalCache.java:2257)
at org.spark_project.guava.cache.LocalCache.get(LocalCache.java:4000)
at
org.spark_project.guava.cache.LocalCache.getOrLoad(LocalCache.java:4004)
at
org.spark_project.guava.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4874)
at
org.apache.spark.sql.kafka010.CachedKafkaProducer$.getOrCreate(CachedKafkaProducer.scala:80)
at
org.apache.spark.sql.kafka010.KafkaWriteTask.execute(KafkaWriteTask.scala:44)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply$mcV$sp(KafkaWriter.scala:89)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply(KafkaWriter.scala:89)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1$$anonfun$apply$1.apply(KafkaWriter.scala:89)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1.apply(KafkaWriter.scala:89)
at
org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$write$1.apply(KafkaWriter.scala:87)
at
org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:980)
at
org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:980)
at
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at
org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123) at
org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more Caused by: org.apache.kafka.common.config.ConfigException:
No resolvable bootstrap urls given in bootstrap.servers at
org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:88)
at
org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:47)
at
org.apache.kafka.clients.producer.KafkaProducer.(KafkaProducer.java:407)
... 31 more
Note:
I have 3 kafka brokers, 3 kafka zookeepers which are hosted on Kubernetes Cluster.

New code:
def writeToKafka(outputDF):
outputDF.selectExpr("CAST(time AS STRING) AS key", "to_json(struct(*)) AS value") \
.write \
.format("kafka") \
.option("kafka.bootstrap.servers", "kafka-svc.test_namespace:9092") \
.option("topic", "test_topic") \
.save()
The kafka brokers are on another namespace in kubernetes cluster. And, my jupyter notebook was on another namespace.
Once I tried with "kafka_service.namespace:portno" for the kafka.bootstrap.servers (i.e.,kafka-svc.test_namespace:9092 ), it worked
kafka-svc - is the kafka service name.
test_namespace - is the name of the namespace where kafka brokers are hosted

Related

OutOfMemoryError when using a Spark UDF to extract tar.gz

Based on the code in the link https://alexwlchan.net/2019/09/unpacking-compressed-archives-in-scala/ I have a UDF in scala to extract tar.gz files (of size 6GB) which contain upto 1000 json documents
val udfExtract = udf((data: Array[Byte]) => Unpacker(data) : Map[String,String])
The UDF returns a map of key (json file name) and value (actual json content) pairs i.e upto 1000 pairs for each tar.gz file
Binary File Schema
val binaryFileSchema = StructType( Array(
StructField( "path", StringType, true),
StructField( "modificationTime", TimestampType, true),
StructField( "length", LongType, true),
StructField( "content", BinaryType,true)))
Load Data where the input path contains 24 tar.gz files
val binaryDF = spark.read
.format("binaryFile").option("pathGlobFilter", "*.tar.gz")
.schema( binaryFileSchema)
.load(input_path)
Extract content using UDF and apply a pre defined schema to parse the extracted content
val parseDF = binaryDF.withColumn("extracted_content", udfExtract($"content"))
.withColumn("file_path", $"path")
.select($"file_path",explode($"extracted_content")).toDF("file_path", "key", "value")
.withColumn("my_json", from_json($"value", MySchema))
.persist()
Write to Table
parseDF.select($"my_json")
.write.format("delta").mode("append")
.saveAsTable("default.raw_data")
When executing the code I get OutOfMemoryError: Java heap space
I feel this OOM error maybe because of using the above UDF to extract the huge compressed files (50GB after uncomperssion) or is maybe related to garbage collection. How can I resolve this?
Below is the stacktrace
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 7 in stage 2.0 failed 4 times, most recent failure: Lost task 7.3 in stage 2.0 (TID 59, 10.24.48.68, executor 1): com.databricks.sql.io.FileReadException: Error while reading file dbfs:/mnt/raw_data_1583107200.tar.gz.
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anon$2.logFileNameAndThrow(FileScanRDD.scala:331)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anon$2.getNext(FileScanRDD.scala:310)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:397)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:250)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:640)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.columnar.CachedRDDBuilder$$anonfun$3$$anon$1.hasNext(InMemoryRelation.scala:137)
at org.apache.spark.storage.memory.MemoryStore.putIterator(MemoryStore.scala:221)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:299)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1235)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1226)
at org.apache.spark.storage.BlockManager.org$apache$spark$storage$BlockManager$$doPut(BlockManager.scala:1161)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1226)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:1045)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:315)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:140)
at org.apache.spark.scheduler.Task.run(Task.scala:113)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$13.apply(Executor.scala:537)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1541)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:543)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.OutOfMemoryError: Java heap space
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2362)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2350)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2349)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2349)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1102)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1102)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1102)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2582)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2529)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2517)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:897)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2282)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:170)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge$$anonfun$writeFiles$1$$anonfun$apply$1.apply(TransactionalWriteEdge.scala:160)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge$$anonfun$writeFiles$1$$anonfun$apply$1.apply(TransactionalWriteEdge.scala:133)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:113)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:243)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:99)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:173)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge$$anonfun$writeFiles$1.apply(TransactionalWriteEdge.scala:133)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge$$anonfun$writeFiles$1.apply(TransactionalWriteEdge.scala:90)
at com.databricks.logging.UsageLogging$$anonfun$recordOperation$1.apply(UsageLogging.scala:428)
at com.databricks.logging.UsageLogging$$anonfun$withAttributionContext$1.apply(UsageLogging.scala:238)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at com.databricks.logging.UsageLogging$class.withAttributionContext(UsageLogging.scala:233)
at com.databricks.spark.util.PublicDBLogging.withAttributionContext(DatabricksSparkUsageLogger.scala:18)
at com.databricks.logging.UsageLogging$class.withAttributionTags(UsageLogging.scala:275)
at com.databricks.spark.util.PublicDBLogging.withAttributionTags(DatabricksSparkUsageLogger.scala:18)
at com.databricks.logging.UsageLogging$class.recordOperation(UsageLogging.scala:409)
at com.databricks.spark.util.PublicDBLogging.recordOperation(DatabricksSparkUsageLogger.scala:18)
at com.databricks.spark.util.PublicDBLogging.recordOperation0(DatabricksSparkUsageLogger.scala:55)
at com.databricks.spark.util.DatabricksSparkUsageLogger.recordOperation(DatabricksSparkUsageLogger.scala:98)
at com.databricks.spark.util.UsageLogger$class.recordOperation(UsageLogger.scala:69)
at com.databricks.spark.util.DatabricksSparkUsageLogger.recordOperation(DatabricksSparkUsageLogger.scala:67)
at com.databricks.spark.util.UsageLogging$class.recordOperation(UsageLogger.scala:344)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.recordOperation(OptimisticTransaction.scala:82)
at com.databricks.sql.transaction.tahoe.metering.DeltaLogging$class.recordDeltaOperation(DeltaLogging.scala:108)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.recordDeltaOperation(OptimisticTransaction.scala:82)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge$class.writeFiles(TransactionalWriteEdge.scala:90)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.writeFiles(OptimisticTransaction.scala:82)
at com.databricks.sql.transaction.tahoe.files.TransactionalWrite$class.writeFiles(TransactionalWrite.scala:110)
at com.databricks.sql.transaction.tahoe.OptimisticTransaction.writeFiles(OptimisticTransaction.scala:82)
at com.databricks.sql.transaction.tahoe.commands.WriteIntoDelta.write(WriteIntoDelta.scala:111)
at com.databricks.sql.transaction.tahoe.commands.CreateDeltaTableCommand$$anonfun$run$2.apply(CreateDeltaTableCommand.scala:119)
at com.databricks.sql.transaction.tahoe.commands.CreateDeltaTableCommand$$anonfun$run$2.apply(CreateDeltaTableCommand.scala:93)
at com.databricks.logging.UsageLogging$$anonfun$recordOperation$1.apply(UsageLogging.scala:428)
at com.databricks.logging.UsageLogging$$anonfun$withAttributionContext$1.apply(UsageLogging.scala:238)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at com.databricks.logging.UsageLogging$class.withAttributionContext(UsageLogging.scala:233)
at com.databricks.spark.util.PublicDBLogging.withAttributionContext(DatabricksSparkUsageLogger.scala:18)
at com.databricks.logging.UsageLogging$class.withAttributionTags(UsageLogging.scala:275)
at com.databricks.spark.util.PublicDBLogging.withAttributionTags(DatabricksSparkUsageLogger.scala:18)
at com.databricks.logging.UsageLogging$class.recordOperation(UsageLogging.scala:409)
at com.databricks.spark.util.PublicDBLogging.recordOperation(DatabricksSparkUsageLogger.scala:18)
at com.databricks.spark.util.PublicDBLogging.recordOperation0(DatabricksSparkUsageLogger.scala:55)
at com.databricks.spark.util.DatabricksSparkUsageLogger.recordOperation(DatabricksSparkUsageLogger.scala:98)
at com.databricks.spark.util.UsageLogger$class.recordOperation(UsageLogger.scala:69)
at com.databricks.spark.util.DatabricksSparkUsageLogger.recordOperation(DatabricksSparkUsageLogger.scala:67)
at com.databricks.spark.util.UsageLogging$class.recordOperation(UsageLogger.scala:344)
at com.databricks.sql.transaction.tahoe.commands.CreateDeltaTableCommand.recordOperation(CreateDeltaTableCommand.scala:45)
at com.databricks.sql.transaction.tahoe.metering.DeltaLogging$class.recordDeltaOperation(DeltaLogging.scala:108)
at com.databricks.sql.transaction.tahoe.commands.CreateDeltaTableCommand.recordDeltaOperation(CreateDeltaTableCommand.scala:45)
at com.databricks.sql.transaction.tahoe.commands.CreateDeltaTableCommand.run(CreateDeltaTableCommand.scala:93)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$5.apply(SparkPlan.scala:193)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:189)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:140)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:117)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:115)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:711)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:711)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:113)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:243)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:99)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:173)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:711)
at org.apache.spark.sql.DataFrameWriter.createTable(DataFrameWriter.scala:509)
at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:488)
at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:431)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(command-392784447715347:4)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(command-392784447715347:63)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(command-392784447715347:65)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw.<init>(command-392784447715347:67)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw$$iw$$iw$$iw$$iw.<init>(command-392784447715347:69)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw$$iw$$iw$$iw.<init>(command-392784447715347:71)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw$$iw$$iw.<init>(command-392784447715347:73)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw$$iw.<init>(command-392784447715347:75)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw$$iw.<init>(command-392784447715347:77)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$$iw.<init>(command-392784447715347:79)
at line3f718bbfd7704a88872ddbd33faa7db546.$read.<init>(command-392784447715347:81)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$.<init>(command-392784447715347:85)
at line3f718bbfd7704a88872ddbd33faa7db546.$read$.<clinit>(command-392784447715347)
at line3f718bbfd7704a88872ddbd33faa7db546.$eval$.$print$lzycompute(<notebook>:7)
at line3f718bbfd7704a88872ddbd33faa7db546.$eval$.$print(<notebook>:6)
at line3f718bbfd7704a88872ddbd33faa7db546.$eval.$print(<notebook>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:793)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1054)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:645)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:644)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:644)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:576)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:572)
at com.databricks.backend.daemon.driver.DriverILoop.execute(DriverILoop.scala:215)
at com.databricks.backend.daemon.driver.ScalaDriverLocal$$anonfun$repl$1.apply$mcV$sp(ScalaDriverLocal.scala:202)
at com.databricks.backend.daemon.driver.ScalaDriverLocal$$anonfun$repl$1.apply(ScalaDriverLocal.scala:202)
at com.databricks.backend.daemon.driver.ScalaDriverLocal$$anonfun$repl$1.apply(ScalaDriverLocal.scala:202)
at com.databricks.backend.daemon.driver.DriverLocal$TrapExitInternal$.trapExit(DriverLocal.scala:714)
at com.databricks.backend.daemon.driver.DriverLocal$TrapExit$.apply(DriverLocal.scala:667)
at com.databricks.backend.daemon.driver.ScalaDriverLocal.repl(ScalaDriverLocal.scala:202)
at com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$9.apply(DriverLocal.scala:396)
at com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$9.apply(DriverLocal.scala:373)
at com.databricks.logging.UsageLogging$$anonfun$withAttributionContext$1.apply(UsageLogging.scala:238)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at com.databricks.logging.UsageLogging$class.withAttributionContext(UsageLogging.scala:233)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionContext(DriverLocal.scala:49)
at com.databricks.logging.UsageLogging$class.withAttributionTags(UsageLogging.scala:275)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionTags(DriverLocal.scala:49)
at com.databricks.backend.daemon.driver.DriverLocal.execute(DriverLocal.scala:373)
at com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:644)
at com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:644)
at scala.util.Try$.apply(Try.scala:192)
at com.databricks.backend.daemon.driver.DriverWrapper.tryExecutingCommand(DriverWrapper.scala:639)
at com.databricks.backend.daemon.driver.DriverWrapper.getCommandOutputAndError(DriverWrapper.scala:485)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommand(DriverWrapper.scala:597)
at com.databricks.backend.daemon.driver.DriverWrapper.runInnerLoop(DriverWrapper.scala:390)
at com.databricks.backend.daemon.driver.DriverWrapper.runInner(DriverWrapper.scala:337)
at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:219)
at java.lang.Thread.run(Thread.java:748)
Caused by: com.databricks.sql.io.FileReadException: Error while reading file dbfs:/mnt/raw_data_1583107200.tar.gz.
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anon$2.logFileNameAndThrow(FileScanRDD.scala:331)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1$$anon$2.getNext(FileScanRDD.scala:310)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:397)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:250)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:640)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.columnar.CachedRDDBuilder$$anonfun$3$$anon$1.hasNext(InMemoryRelation.scala:137)
at org.apache.spark.storage.memory.MemoryStore.putIterator(MemoryStore.scala:221)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:299)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1235)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1226)
at org.apache.spark.storage.BlockManager.org$apache$spark$storage$BlockManager$$doPut(BlockManager.scala:1161)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1226)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:1045)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:364)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:315)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:353)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:317)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:140)
at org.apache.spark.scheduler.Task.run(Task.scala:113)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$13.apply(Executor.scala:537)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1541)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:543)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.OutOfMemoryError: Java heap space

Parquet files written from Spark Dataframe appear corrupted

I am writing data to Parquet files using Spark, reading data output from AWS Kinesis in an hourly fashion based upon AWS Kinesis hourly partitions.
When writing, I partition the data output by year/month/day/hour/eventType, and then append & save to S3:
fooDf
.withColumn("timestamp_new", (col("timestamp").cast("timestamp")))
.drop("timestamp")
.withColumnRenamed("timestamp_new", "timestamp")
.withColumn("year", year(col("timestamp")))
.withColumn("month", month(col("timestamp")))
.withColumn("day", dayofmonth(col("timestamp")))
.withColumn("hour", hour(col("timestamp")))
.write
.option("mode", "DROPMALFORMED")
.mode("overwrite")
.partitionBy("year", "month", "day", "hour", "eventType")
.parquet("s3://foo/bar/foobar")
, but the problem arises when reading, I get incompatible data types, even though Parquet should handle schema updates. The issue is:
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2041)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2029)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2028)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2028)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2262)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2211)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2200)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3383)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2544)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2758)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
at org.apache.spark.sql.Dataset.show(Dataset.scala:745)
at org.apache.spark.sql.Dataset.show(Dataset.scala:704)
... 85 elided
Caused by: org.apache.spark.sql.execution.QueryExecutionException: Encounter error while reading parquet files. One possible cause: Parquet column cannot be converted in the corresponding files. Details:
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:193)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
... 3 more
Caused by: org.apache.parquet.io.ParquetDecodingException: Can not read value at 0 in block -1 in file s3://foo/bar/foobar/year=2019/month=9/day=5/hour=22/eventType=barbarbar/part-rawr-c000.snappy.parquet
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:251)
at org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:207)
at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:181)
... 22 more
Caused by: java.lang.ClassCastException: Expected instance of group converter but got "org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$ParquetStringConverter"
at org.apache.parquet.io.api.Converter.asGroupConverter(Converter.java:34)
at org.apache.parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:267)
at org.apache.parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:147)
at org.apache.parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:109)
at org.apache.parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:165)
at org.apache.parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:109)
at org.apache.parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:137)
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:222)
... 26 more
This is a common problem as while reading Spark can not determine data type for eventType (e.g event=barbarbar)
in spark-submit or inside your code, set following before reading the file
spark.conf.set("spark.sql.sources.partitionColumnTypeInference.enabled", "false")
or read it with a Schema.

Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: java.io.EOFException in SPARK

I have a Spark program that converts cobol copybook data into XML when i try to run this i get errors like java.io.EOFException i googled it a lot but did not get much helpful links.
I have a sample file which is flat file(.bin file) and that i am able to convert comfortably into xml from copybook format. But i have another file which is flat file which is at this location
cobol Copybook file is kept at file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/edited1.cbl
file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/xyz_Input
When i run the program with my flat file i get errors
The error is like this
20:37:29.653 ERROR org.apache.spark.scheduler.TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): java.io.EOFException
at java.io.DataInputStream.readFully(Unknown Source)
at java.io.DataInputStream.readFully(Unknown Source)
at org.apache.spark.input.FixedLengthBinaryRecordReader.nextKeyValue(FixedLengthBinaryRecordReader.scala:118)
at org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:207)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(generated.java:41)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(generated.java:63)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1533)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1521)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1520)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1520)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1748)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1703)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1692)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2094)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:278)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2439)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2438)
at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2846)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2845)
at org.apache.spark.sql.Dataset.count(Dataset.scala:2438)
at za.co.absa.cobrix.spark.cobol.examples.CobolSparkExample1$.main(CobolSparkExample1.scala:54)
at za.co.absa.cobrix.spark.cobol.examples.CobolSparkExample1.main(CobolSparkExample1.scala)
Caused by: java.io.EOFException
at java.io.DataInputStream.readFully(Unknown Source)
at java.io.DataInputStream.readFully(Unknown Source)
at org.apache.spark.input.FixedLengthBinaryRecordReader.nextKeyValue(FixedLengthBinaryRecordReader.scala:118)
at org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:207)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(generated.java:41)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(generated.java:63)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
package za.co.absa.cobrix.spark.cobol.examples
import org.apache.spark.sql.{SaveMode, SparkSession}
import za.co.absa.cobrix.spark.cobol.utils.SparkUtils
import com.databricks.spark.xml._
object CobolSparkExample1 {
def main(args: Array[String]): Unit = {
val sparkBuilder = SparkSession.builder().appName("Cobol source reader example 1")
val spark = sparkBuilder
.master("local[*]")
.getOrCreate()
val df = spark
.read
.format("za.co.absa.cobrix.spark.cobol.source")
.option("copybook", "file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/edited1.cbl")
.load("file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/xyz_Input")
df.printSchema()
println(df.count)
df.write
.format("com.databricks.spark.xml")
//.option(rowTag = "book", rootTag ="book")
//.option("book", "book")
.save("file:///Users/admin/Desktop/Kafka/cobrix-master/cobrix-master/examples/example_data/Output/newbooks.xml")
}
}
Input source file is like this
ACHFOUND 079675882 1446320661365001Y00000 000M 8019721193 ACHFOUND 6613-144632 000875 <EOR>
ACHFOUND 079675882 1446320661365001Y10000 S10 ACHFOUND 875079675882 144632 11180524180525SAFEWAY 21130 8019721193 ACHFOUND 1805241300000000000087500000000180524144632 BTALBERTSONS COMPANIES, LLC 9 0091372096500NATIONAL SERVICES CENTER P.O. BOX 29093 PHOENIX AZ85038 STALBERTSONS LLC A SUB. OF ALBERTSONS COMPANIES, LLC 9 0091372096613 <EOR>

Sparkling water local mode cluster error

I'm trying to extend the hamorspam example(https://github.com/h2oai/sparkling-water/blob/master/examples/scripts/hamOrSpam.script.scala
) to make parallel predictions for large dataset using spark's parallel computation power(during the inference stage, not the training phase).
Below is the code I have written for the same. Moreover, it perfectly works fine in single node localmode (for export MASTER="local[*] ``), but fails when I run with export MASTER="local-cluster[2,2,1024] when 2 worker nodes are spawn.(to check the prediction parallelisation)
val data_test = load("smsData.txt") // Should be a large(in GBs) test dataset - using same training data for testing purposes just to test the workflow
val message_test = data.map( r => r(1))
message.take(1000).map(x => isSpam(x, dlModel, hashingTF, idfModel, h2oContext))
So the code fails when executing scala> val table:H2OFrame = resultRDD (
https://github.com/h2oai/sparkling-water/blob/master/examples/scripts/hamOrSpam.script.scala#L110)
I have attached the error from the console below:
17/06/26 20:25:49 WARN TaskSetManager: Lost task 0.0 in stage 6.0 (TID 43, 144.27.27.98, executor 1): java.lang.NoClassDefFoundError: Could not ini
tialize class $line32.$read$
at $line41.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:57)
at $line41.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:57)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1010)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1009)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
17/06/26 20:25:49 ERROR TaskSetManager: Task 0 in stage 6.0 failed 4 times; aborting job
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 6.0 failed 4 times, most recent failure: Lost task 0.3 in stage
6.0 (TID 49, 144.27.27.98, executor 0): java.lang.NoClassDefFoundError: Could not initialize class
at $anonfun$1.apply(<console>:57)
at $anonfun$1.apply(<console>:57)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1010)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1009)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1981)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1025)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.reduce(RDD.scala:1007)
at org.apache.spark.h2o.utils.H2OSchemaUtils$.collectMaxArrays(H2OSchemaUtils.scala:229)
at org.apache.spark.h2o.utils.H2OSchemaUtils$.expandedSchema(H2OSchemaUtils.scala:107)
at org.apache.spark.h2o.converters.SparkDataFrameConverter$.toH2OFrame(SparkDataFrameConverter.scala:59)
at org.apache.spark.h2o.H2OContext.asH2OFrame(H2OContext.scala:167)
at org.apache.spark.h2o.H2OContextImplicits.asH2OFrameFromDataFrame(H2OContextImplicits.scala:54)
... 58 elided
Caused by: java.lang.NoClassDefFoundError: Could not initialize class
at $anonfun$1.apply(<console>:57)
at $anonfun$1.apply(<console>:57)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1010)
at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$15.apply(RDD.scala:1009)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1980)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Any ideas?. Thanks in advance.

Spark GraphX : requirement failed: Invalid initial capacity

I am new to Spark, Scala.
I am trying to perform Triangle Counts in this dataset : DataSet
for a hobby project
This is the code I have written so far :
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.graphx.Edge
import org.apache.spark.graphx.Graph
import org.apache.spark.graphx.Graph.graphToGraphOps
import org.apache.spark.graphx.PartitionStrategy
import org.apache.spark.rdd.RDD
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions
object GraphXApps {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setAppName("GraphXApps")
.setSparkHome(System.getenv("SPARK_HOME"))
.setJars(SparkContext.jarOfClass(this.getClass).toList)
val sc = new SparkContext(conf)
// Load the edges in canonical order and partition the graph for triangle count
val edges: RDD[Edge[String]] =
sc.textFile(args(0)).map { line =>
val fields = line.split("\t")
Edge(fields(0).toLong, fields(1).toLong)
}
val graph : Graph[String, String] = Graph.fromEdges(edges.sortBy(_.srcId, ascending = true, 1), "defaultProperty").partitionBy(PartitionStrategy.RandomVertexCut)
// Find the triangle count for each vertex
val triCounts = graph.triangleCount().vertices
val triCountById = graph.vertices.join(triCounts).map(_._2._2)
// Print the result
println(triCountById.collect().mkString("\n"))
sc.stop()
}
}
But I am getting this error : java.lang.IllegalArgumentException: requirement failed: Invalid initial capacity
Please let me know where I am going wrong. It would be really helpful.
Full Stack Trace
16/10/31 01:03:08 ERROR TaskSetManager: Task 0 in stage 8.0 failed 1 times; aborting job
16/10/31 01:03:08 INFO TaskSchedulerImpl: Removed TaskSet 8.0, whose tasks have all completed, from pool
16/10/31 01:03:08 INFO TaskSchedulerImpl: Cancelling stage 8
16/10/31 01:03:08 INFO DAGScheduler: ShuffleMapStage 8 (mapPartitions at VertexRDDImpl.scala:245) failed in 0.131 s
16/10/31 01:03:08 INFO DAGScheduler: Job 0 failed: collect at GraphXApps.scala:47, took 3.128921 s
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 8.0 failed 1 times, most recent failure: Lost task 0.0 in stage 8.0 (TID 8, localhost): java.lang.IllegalArgumentException: requirement failed: Invalid initial capacity
at scala.Predef$.require(Predef.scala:224)
at org.apache.spark.util.collection.OpenHashSet$mcJ$sp.<init>(OpenHashSet.scala:51)
at org.apache.spark.util.collection.OpenHashSet$mcJ$sp.<init>(OpenHashSet.scala:57)
at org.apache.spark.graphx.lib.TriangleCount$$anonfun$5.apply(TriangleCount.scala:70)
at org.apache.spark.graphx.lib.TriangleCount$$anonfun$5.apply(TriangleCount.scala:69)
at org.apache.spark.graphx.impl.VertexPartitionBaseOps.map(VertexPartitionBaseOps.scala:61)
at org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$mapValues$2.apply(VertexRDDImpl.scala:102)
at org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$mapValues$2.apply(VertexRDDImpl.scala:102)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$3.apply(VertexRDDImpl.scala:156)
at org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$3.apply(VertexRDDImpl.scala:154)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:332)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:330)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:919)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:910)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:910)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:668)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:281)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1450)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1438)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1437)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1437)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1659)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1618)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1607)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1884)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1897)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1911)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:893)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.RDD.collect(RDD.scala:892)
at GraphXApps$.main(GraphXApps.scala:47)
at GraphXApps.main(GraphXApps.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:729)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.IllegalArgumentException: requirement failed: Invalid initial capacity
at scala.Predef$.require(Predef.scala:224)
at org.apache.spark.util.collection.OpenHashSet$mcJ$sp.<init>(OpenHashSet.scala:51)
at org.apache.spark.util.collection.OpenHashSet$mcJ$sp.<init>(OpenHashSet.scala:57)
at org.apache.spark.graphx.lib.TriangleCount$$anonfun$5.apply(TriangleCount.scala:70)
at org.apache.spark.graphx.lib.TriangleCount$$anonfun$5.apply(TriangleCount.scala:69)
at org.apache.spark.graphx.impl.VertexPartitionBaseOps.map(VertexPartitionBaseOps.scala:61)
at org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$mapValues$2.apply(VertexRDDImpl.scala:102)
at org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$mapValues$2.apply(VertexRDDImpl.scala:102)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$3.apply(VertexRDDImpl.scala:156)
at org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$3.apply(VertexRDDImpl.scala:154)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:332)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:330)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:919)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:910)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:910)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:668)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:281)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
This appears to be a bug within Spark 2.0 (so far, have tested this against 2.0, 2.0.1, and 2.0.2). Jira [SPARK-18200]: GraphX Invalid initial capacity when running triangleCount has been created to address this.
Your code should work okay with Spark 1.6 as noted in this linked notebook.
But as you noted, it failed in Spark 2.0, as noted in this linked notebook.
In the interim, please try Spark 1.6 or try using GraphFrames, as noted in this linked notebook.
HTH!