When Kafka sends multiple batches in the same request? - apache-kafka

Kafka sends a Batch as soon as batch.size of bytes is collected or linger.ms time has passed.
Then how come there can be multiple Batches in a single request? Does it mean that when Kafka is ready to send a Batch for one partition, Batches for other partitions would be closed and sent in the same request?
Doesn't it affect compression efficiency for the Batches that were not closed by batch.size or linger.ms ?

After investigating the source code it looks like when there is data ready to be sent to a node (at least one batch for partition of this node is ready), then Sender will take for each partition of the node the ready batch that fits into request and sends them all.
So if the batch is not yet "ready" (by bytes or by time) it is not included in the batch. So the compression rates are not affected.

Related

Kafka Producer guarantees

I'm using a Kafka Producer and my application sends individual ProducerRecords all with the same key into a single partition, and these ProducerRecords are then batched (using batch.size and linger.ms parameters) before being sent to the brokers. I have enable.idempotence=true and acks=all.
If one record in the middle of a batch fails to be written, for example if a host crashes or a network failure or disk failure occurs or the record failed to be acked by the minimum replicas, does Kafka guarantee that all subsequent records will also not be written? Or is there a possibility that a record in the middle of a batch could be missing?
If one record in the middle of a batch fails to be written, for example if a host crashes or a network failure or disk failure occurs or the record failed to be acked by the minimum replicas, does Kafka guarantee that all subsequent records will also not be written?
Yes, if any message within a batch fails, then all messages in the same batch fail. So none of the messages within the batch will be written to the broker's disk.
Or is there a possibility that a record in the middle of a batch could be missing?
No, either all or none messages of the batch are written to the broker.
This is achieved by the separation between the Producer client thread and a local buffer that queues and batches the data before sending it physically to the broker.
Since your records are all going to the same partition, you can safely assume all previous records will also be there.
Kafka guarantees ordering in a given partition, so if you are sending messages m1 and m2 (in order) to the partition, the batch and linger logic will not override the ordering. In other words, if you see the message m2 at your consumer, you can safely assume that m1 was delivered safely as well.

when will trigger producer send a request?

if i send just one record at producer side and wait, when will producer sends the record to broker?
In kafka docs, i found the config called "linger.ms", and it says:
once we get batch.size worth of records for a partition it will be
sent immediately regardless of this setting, however if we have
fewer
than this many bytes accumulated for this partition we will 'linger'
for the specified time waiting for more records to show up.
According above docs, i have two questions.
if producer receives datas which size reaches batch.size, it will immediately trigger to send a request which only contains one batch to broker? But as we know, one request can contain many batches, so how does it happen?
does it mean that even the received datas are not enough of batch.size, it will also trigger to send a request to broker after waiting linger.ms ?
In Kafka, the lowest unit of sending is a record (a KV pair).
Kafka producer attempts to send records in batches in-order to optimize data transmission. So a single push from producer to the cluster -- to the broker leader to be precise -- could contain multiple records.
Moreover, batching always applies only to a given partition. Records produced to different partitions cannot be batched together, though they could form multiple batches.
There are a few parameters which influence the batching behaviour, as described in the documentation:
buffer.memory -
The total bytes of memory the producer can use to buffer records
waiting to be sent to the server. If records are sent faster than they
can be delivered to the server the producer will block for
max.block.ms after which it will throw an exception.
batch.size -
The producer will attempt to batch records together into fewer
requests whenever multiple records are being sent to the same
partition. This helps performance on both the client and the server.
This configuration controls the default batch size in bytes. No
attempt will be made to batch records larger than this size.
Requests sent to brokers will contain multiple batches, one for each
partition with data available to be sent.
linger.ms -
The producer groups together any records that arrive in between
request transmissions into a single batched request. Normally this
occurs only under load when records arrive faster than they can be
sent out. However in some circumstances the client may want to reduce
the number of requests even under moderate load. This setting
accomplishes this by adding a small amount of artificial delay—that
is, rather than immediately sending out a record the producer will
wait for up to the given delay to allow other records to be sent so
that the sends can be batched together. This can be thought of as
analogous to Nagle's algorithm in TCP. This setting gives the upper
bound on the delay for batching: once we get batch.size worth of
records for a partition it will be sent immediately regardless of this
setting, however if we have fewer than this many bytes accumulated for
this partition we will 'linger' for the specified time waiting for
more records to show up. This setting defaults to 0 (i.e. no delay).
Setting linger.ms=5, for example, would have the effect of reducing
the number of requests sent but would add up to 5ms of latency to
records sent in the absence of load.
So from above documentation, you could understand - linger.ms is an artificial delay to wait if there are not enough bytes to transmit, but if producer accumulates enough bytes before linger.ms is elapsed, then the request is sent anyway.
On top of that, batching is also influenced by max.request.size
max.request.size -
The maximum size of a request in bytes. This setting will limit the
number of record batches the producer will send in a single request to
avoid sending huge requests. This is also effectively a cap on the
maximum record batch size. Note that the server has its own cap on
record batch size which may be different from this.

Producer side compression in apache kafka

I hve enabled snappy compression on producer side with a batch size of 64kb, and processing messages of 1 kb each and setting linger time to inf, does this mean till i process 64 messages, producer wont send the messages to kafka out topic...
In other words, will producer send each message to kafka or wait for 64 messages and send them in a single batch...
Cause the offsets are increasing one by one rather than in the multiple of 64
Edit - using flink-kafka connectors
Messages are batched by producer so that the network usage is minimized not to be written "as a batch" into Kafka's commitlog. What you are seeing is correctly done by Kafka as each message needs to be accounted for i.e. identified key / partition relationship, appended to the commitlog and then offset is incremented. Unless the first two steps are done, offset is not incremented.
Also there is data replication to be taken care of based on configurations as well as message tracking systems get updated for each message received (to support lag apis).
Also do note, the batch.size parameter considers ready to ship message's size, which has been pre-processed as 1. compressed 2. serialized by your favorite serializer.

How does kafka compression relate to configurations that refer to bytes?

It's unclear to me (and I haven't managed to find any documentation that makes it perfectly clear) how compression affects kafka configurations that deal with bytes.
Take a hypothetical message that is exactly 100 bytes, a producer with a batch size of 1000 bytes, and a consumer with a fetch size of 1000 bytes.
With no compression it seems pretty clear that my producer would batch 10 messages at a time and my consumer would poll 10 messages at a time.
Now assume a compression (specified at the producer -- not on the broker) that (for simplicity) compresses to exactly 10% of the uncompressed size.
With that same config, would my producer still batch 10 messages at a time, or would it start batching 100 messages at a time? I.e. is the batch size pre- or post-compression? The docs do say this:
Compression is of full batches of data
...which I take to mean that it would compress 1000 bytes (the batch size) down to 100 bytes and send that. Is that correct?
Same question for the consumer fetch. Given a 1K fetch size, would it poll just 10 messages at a time (because the uncompressed size is 1K) or would it poll 100 messages (because the compressed size is 1K)? I believe that the fetch size will cover the compressed batch, in which case the consumer would be fetching 10 batches as-produced-by-the-producer at a time. Is this correct?
It seems confusing to me that, if I understand correctly, the producer is dealing with pre-compression sizes and the consumer is dealing with post-compression sizes.
It's both simpler and more complicated ;-)
It's simpler in that both the producer and the consumer compresses and uncompresses the same Kafka Protocol Produce Requests and Fetch Requests and the broker just stores them with zero copy in their native wire format. Kafka does not compress individual messages before they are sent. It waits until a batch of messages (all going to the same partition) are ready for send and then compresses the entire batch and sends it as one Produce Request.
It's more complicated because you also have to factor in the linger time which will trigger a send of a batch of messages earlier than when the producer buffer size is full. You also have to consider that messages may have different keys, or for other reasons be going to different topic partitions on different brokers so it's not true to say that qty(10) records compressed to 100 bytes each go all as one batch to one broker as a single produce request of 1000 bytes (unless all the messages are being sent to a topic with a single partition).
From https://kafka.apache.org/0110/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
The producer maintains buffers of unsent records for each partition.
These buffers are of a size specified by the batch.size config. Making
this larger can result in more batching, but requires more memory
(since we will generally have one of these buffers for each active
partition).
By default a buffer is available to send immediately even if there is
additional unused space in the buffer. However if you want to reduce
the number of requests you can set linger.ms to something greater than
0. This will instruct the producer to wait up to that number of milliseconds before sending a request in hope that more records will
arrive to fill up the same batch. This is analogous to Nagle's
algorithm in TCP. For example, in the code snippet above, likely all
100 records would be sent in a single request since we set our linger
time to 1 millisecond. However this setting would add 1 millisecond of
latency to our request waiting for more records to arrive if we didn't
fill up the buffer. Note that records that arrive close together in
time will generally batch together even with linger.ms=0 so under
heavy load batching will occur regardless of the linger configuration;
however setting this to something larger than 0 can lead to fewer,
more efficient requests when not under maximal load at the cost of a
small amount of latency.

How to set Kafka Producer message rate per second?

I am reading a csv file and giving the rows of this input to my Kafka Producer. now I want my Kafka Producer to produce messages at a rate of 100 messages per second.
Take a look at linger.ms and batch.size properties of Kafka Producer.
You have to adjust these properties correspondingly to get desired rate.
The producer groups together any records that arrive in between request transmissions into a single batched request. Normally this occurs only under load when records arrive faster than they can be sent out. However in some circumstances the client may want to reduce the number of requests even under moderate load. This setting accomplishes this by adding a small amount of artificial delay—that is, rather than immediately sending out a record the producer will wait for up to the given delay to allow other records to be sent so that the sends can be batched together. This can be thought of as analogous to Nagle's algorithm in TCP. This setting gives the upper bound on the delay for batching: once we get batch.size worth of records for a partition it will be sent immediately regardless of this setting, however if we have fewer than this many bytes accumulated for this partition we will 'linger' for the specified time waiting for more records to show up. This setting defaults to 0 (i.e. no delay). Setting linger.ms=5, for example, would have the effect of reducing the number of requests sent but would add up to 5ms of latency to records sent in the absense of load.
If you like stream processing then akka-streams has nice support for throttling: http://doc.akka.io/docs/akka/current/java/stream/stream-quickstart.html#time-based-processing
Then the akka-stream-kafka (aka reactive-kafka) library allows you to connect the two together: http://doc.akka.io/docs/akka-stream-kafka/current/home.html
In Kafka JVM Producer, the throughput depends upon multiple factors. And most commonly it's calculated in MB/sec rather than Msg/sec. In your example, if let's say each of your row in CSV is 1MB in size then you need to tune your producer configs to achieve 100MB/sec, so that you can achieve your target throughput of 100 Msg/sec. While tuning producer configs, you have to take into the consideration what's your batch.size ( measured in bytes ) config value? If it's set too low then producer will try to send messages more often and wait for reply from server. This will improve the producer's throughput. But would impact the latency. If you are using async callback based producer then in this case your overall throughput will be limited by how many number of messages producer can send before waiting for reply from server determined by max.in.flight.request.per.connection.
If you keep batch.size too high then producer throughput will get affected since after waiting for linger.ms period kafka producer will send the all messages in a batch to broker for that particular partition at once. But having bigger batch.size means bigger buffer.memory which might put pressure on GC.