Get the last records of KStream - apache-kafka

I'm very new to Kafka Stream API.
I have a KStream like this:
KStream<Long,String> joinStream = builder.stream(("output"));
The KStream with records value look like this:
The stream will be updated every 1s.
I need to build a Rest API that will be calculated based on the value profit and spotPrice.
But I've struggled to get the value of the last record.

I am assuming that you mean the max value of the stream when you say the last value as the values are continuously arriving. Then you can use the reduce transformation to always update the output stream with the max value.
final StreamsBuilder builder = new StreamsBuilder();
KStream<Long, String> stream = builder.stream("INPUT_TOPIC", Consumed.with(Serdes.Long(), Serdes.String()));
stream
.mapValues(value -> Long.valueOf(value))
.groupByKey()
.reduce(new Reducer<Long>() {
#Override
public Long apply(Long currentMax, Long v) {
return (currentMax > v) ? currentMax : v;
}
})
.toStream().to("OUTPUT_TOPIC");
return builder.build();
And in case that you want to retrive it in a rest api i suggest to take a look at Spring cloud + Kafka streams (https://cloud.spring.io/spring-cloud-stream-binder-kafka/spring-cloud-stream-binder-kafka.html) that you can exchange messages to spring web.

Related

How to access a KStreams Materialized State Store from another Stream Processor

I need to be able to remove a record from a Ktable from a separate Stream Processor. Today I'm using aggregate() and passing a materialized state store. In a separate processor that reads from a "termination" topic, I'd like to query that materialized state store either in a .transform() or a different .aggregate() and 'remove' that key/value. Every time I try to access the materialized state from a separate stream processor, it keeps telling me either the store isn't added to the topology, so then I add it and run it again, then it tells me it's already be registered and errors out.
builder.stream("topic1").map().groupByKey().aggregate(() -> null,
(aggKey, newValue, aggValue) -> {
//add to the Ktable
return newValue;
},
stateStoreMaterialized);
and in a separate stream I want to delete a key from that stateStoreMaterialized
builder.stream("topic2")
.transform(stateStoreDeleteTransformer, stateStoreSupplier.name())
stateStoreDeleteTransformer will query the key and delete it.
//in ctor
KeyValueBytesStoreSupplier stateStoreSupplier = Stores.persistentKeyValueStore("store1");
stateStoreMaterialized = Materialized.<String, MyObj>as(stateStoreSupplier)
.withKeySerde(Serdes.String())
.withValueSerde(mySerDe);
I don't have a terminal flag on my topic1 stream object value that can trigger a deletion. It has to come from another stream/topic.
When I try to use the same Materialized Store on two separate stream processors I get..
Invalid topology: Topic STATE_STORE-repartition has already been registered by another source.
at org.springframework.kafka.config.StreamsBuilderFactoryBean.start(StreamsBuilderFactoryBean.java:268)
Edit:
This is the 1st error I receive.
Caused by: org.apache.kafka.streams.errors.StreamsException: Processor KSTREAM-TRANSFORMVALUES-0000000012 has no access to StateStore store1 as the store is not connected to the processor. If you add stores manually via '.addStateStore()' make sure to connect the added store to the processor by providing the processor name to '.addStateStore()' or connect them via '.connectProcessorAndStateStores()'. DSL users need to provide the store name to '.process()', '.transform()', or '.transformValues()' to connect the store to the corresponding operator. If you do not add stores manually, please file a bug report at https://issues.apache.org/jira/projects/KAFKA.
at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.getStateStore(ProcessorContextImpl.java:104)
at org.apache.kafka.streams.processor.internals.ForwardingDisabledProcessorContext.getStateStore(ForwardingDisabledProcessorContext.java:85)
So then I do this:
stateStoreSupplier = Stores.persistentKeyValueStore(STATE_STORE_NAME);
storeStoreBuilder = Stores.keyValueStoreBuilder(stateStoreSupplier, Serdes.String(), jsonSerDe);
stateStoreMaterialized = Materialized.as(stateStoreSupplier);
Then I get this error:
Caused by: org.apache.kafka.streams.errors.TopologyException: Invalid topology: StateStore 'state-store' is already added.
at org.apache.kafka.streams.processor.internals.InternalTopologyBuilder.addStateStore(InternalTopologyBuilder.java:520)
at org.apache.kafka.streams.processor.internals.InternalTopologyBuilder.addStateStore(InternalTopologyBuilder.java:512)
Here's the code that fixed my issue. As it turns out, order matters when building the streams. Had to set the materialized store first and then in subsequent lines of code, setup the transformer.
/**
* Create the streams using the KStreams DSL - a method to configure the stream and add any state stores.
*/
#Bean
public KafkaStreamsConfig setup() {
final JsonSerDe<Bus> ltaSerde = new JsonSerDe<>(Bus.class);
final StudentSerde<Student> StudentSerde = new StudentSerde<>();
//start lta stream
KStream<String, Bus> ltaStream = builder
.stream(ltaInputTopic, Consumed.with(Serdes.String(), ltaSerde));
final KStream<String, Student> statusStream = this.builder
.stream(this.locoStatusInputTopic,
Consumed.with(Serdes.String(),
StudentSerde));
//create lta store
KeyValueBytesStoreSupplier ltaStateStoreSupplier = Stores.persistentKeyValueStore(LTA_STATE_STORE_NAME);
final Materialized<String, Bus, KeyValueStore<Bytes, byte[]>> ltaStateStoreMaterialized =
Materialized.
<String, Bus>as(ltaStateStoreSupplier)
.withKeySerde(Serdes.String())
.withValueSerde(ltaSerde);
KTable<String, Bus> ltaStateProcessor = ltaStream
//map and convert lta stream into Loco / LTA key value pairs
.groupByKey(Grouped.with(Serdes.String(), ltaSerde))
.aggregate(
//The 'aggregate' and 'reduce' functions ignore messages with null values FYI.
// so if the value after the groupbykey produces a null value, it won't be removed from the state store.
//which is why it's very important to send a message with some terminal flag indicating this value should be removed from the store.
() -> null, /* initializer */
(aggKey, newValue, aggValue) -> {
if (null != newValue.getAssociationEndTime()) { //if there is an endTime associated to this train/loco then remove it from the ktable
logger.trace("removing LTA: {} loco from {} train", newValue.getLocoId(), newValue.getTrainAuthorization());
return null; //Returning null removes the record from the state store as well as its changelog topic. re: https://objectpartners.com/2019/07/31/slimming-down-your-kafka-streams-data/
}
logger.trace("adding LTA: {} loco from {} train", newValue.getLocoId(), newValue.getTrainAuthorization());
return newValue;
}, /* adder */
ltaStateStoreMaterialized
);
// don't need builder.addStateStore(keyValueStoreStoreBuilder); and CANT use it
// because the ltaStateStoreMaterialized will already be added to the topology in the KTable aggregate method above.
// The below transformer can use the state store because it's already added (apparently) by the aggregate method.
// Add the KTable processors first, then if there are any transformers that need to use the store, add them after the KTable aggregate method.
statusStream.map((k, v) -> new KeyValue<>(v.getLocoId(), v))
.transform(locoStatusTransformerSupplier, ltaStateStoreSupplier.name())
.to("testing.outputtopic", Produced.with(Serdes.String(), StudentSerde));
return this; //can return anything except for void.
}
is stateStoreMaterialized and stateStoreSupplier.name() has the same name?
Use have a error in your topology
KStream.transform(stateStoreDeleteTransformer, stateStoreSupplier.name())
You have to supply new instant of StateStoreDeleteTransformer per ProcessContext in TransformerSupplier, like this:
KStream.transform(StateStoreDeleteTransformer::new, stateStoreSupplier.name())
or
KStream.transform(() -> StateStoreDeleteTransformerSupplier.get(), stateStoreSupplier.name())//StateStoreDeleteTransformerSupplier return new instant of StateStoreDeleteTransformer
in stateStoreDeleteTransformer how do you intent on using stateStoreMaterialized inside transformer directly?
I have the similar use case and I using a KeyValueStore<String, MyObj>
public void init(ProcessorContext context) {
kvStore = (KeyValueStore<String, MyObj>) context.getStateStore("store1");
}

Kafka Stream producing custom list of messages based on certain conditions

We have the following stream processing requirement.
Source Stream ->
transform(condition check - If (true) then generate MULTIPLE ADDITIONAL messages else just transform the incoming message) ->
output kafka topic
Example:
If condition is true for message B(D,E,F are the additional messages produced)
A,B,C -> A,D,E,F,C -> Sink Kafka Topic
If condition is false
A,B,C -> A,B,C -> Sink Kafka Topic
Is there a way we can achieve this in Kafka streams?
You can use flatMap() or flatMapValues() methods. These methods take one record and produce zero, one or more records.
flatMap() can modify the key, values and their datatypes while flatMapValues() retains the original keys and change the value and value data type.
Here is an example pseudocode considering the new messages "C","D","E" will have a new key.
KStream<byte[], String> inputStream = builder.stream("inputTopic");
KStream<byte[], String> outStream = inputStream.flatMap(
(key,value)->{
List<KeyValue<byte[], String>> result = new LinkedList<>();
// If message value is "B". Otherwise place your condition based on data
if(value.equalsTo("B")){
result.add(KeyValue.pair("<new key for message C>","C"));
result.add(KeyValue.pair("<new key for message D>","D"));
result.add(KeyValue.pair("<new key for message E>","E"));
}else{
result.add(KeyValue.pair(key,value));
}
return result;
});
outStream.to("sinkTopic");
You can read more about this :
https://docs.confluent.io/current/streams/developer-guide/dsl-api.html#streams-developer-guide-dsl-transformations-stateless

KTable Reduce function does not honor windowing

Requirement :- We need to consolidate all the messages having same orderid and perform subsequent operation for the consolidated Message.
Explanation :- Below snippet of code tries to capture all order messages received from a particular tenant and tries to consolidate to a single order message after waiting for a specific period of time
It does the following stuff
Repartition message based on OrderId. So each order message will be having tenantId and groupId as its key
Perform a groupby key operation followed by windowed operation for 2 minutes
Reduce operation is performed once windowing is completed.
Ktable is converted again to stream back and then its output is send to another kafka topic
Expected Output :- If there are 5 messages having same order id being sent with in window period. It was expected that the final kafka topic should have only one message and it would be the last reduce operation message.
Actual Output :- All the 5 messages are seen indicating windowing is not happening before invoking reduce operation. All the messages seen in kafka have proper reduce operation being done as each and every message is received.
Queries :- In kafka stream library version 0.11.0.0 reduce function used to accept timewindow as its argument. I see that this is deprecated in kafka stream version 1.0.0. Windowing which is done in the below piece of code, is it correct ? Is windowing supported in newer version of kafka stream library 1.0.0 ? If so, then is there something can be improved in below snippet of code ?
String orderMsgTopic = "sampleordertopic";
JsonSerializer<OrderMsg> orderMsgJSONSerialiser = new JsonSerializer<>();
JsonDeserializer<OrderMsg> orderMsgJSONDeSerialiser = new JsonDeserializer<>(OrderMsg.class);
Serde<OrderMsg> orderMsgSerde = Serdes.serdeFrom(orderMsgJSONSerialiser,orderMsgJSONDeSerialiser);
KStream<String, OrderMsg> orderMsgStream = this.builder.stream(orderMsgTopic, Consumed.with(Serdes.ByteArray(), orderMsgSerde))
.map(new KeyValueMapper<byte[], OrderMsg, KeyValue<? extends String, ? extends OrderMsg>>() {
#Override
public KeyValue<? extends String, ? extends OrderMsg> apply(byte[] byteArr, OrderMsg value) {
TenantIdMessageTypeDeserializer deserializer = new TenantIdMessageTypeDeserializer();
TenantIdMessageType tenantIdMessageType = deserializer.deserialize(orderMsgTopic, byteArr);
String newTenantOrderKey = null;
if ((tenantIdMessageType != null) && (tenantIdMessageType.getMessageType() == 1)) {
Long tenantId = tenantIdMessageType.getTenantId();
newTenantOrderKey = tenantId.toString() + value.getOrderKey();
} else {
newTenantOrderKey = value.getOrderKey();
}
return new KeyValue<String, OrderMsg>(newTenantOrderKey, value);
}
});
final KTable<Windowed<String>, OrderMsg> orderGrouping = orderMsgStream.groupByKey(Serialized.with(Serdes.String(), orderMsgSerde))
.windowedBy(TimeWindows.of(windowTime).advanceBy(windowTime))
.reduce(new OrderMsgReducer());
orderGrouping.toStream().map(new KeyValueMapper<Windowed<String>, OrderMsg, KeyValue<String, OrderMsg>>() {
#Override
public KeyValue<String, OrderMsg> apply(Windowed<String> key, OrderMsg value) {
return new KeyValue<String, OrderMsg>(key.key(), value);
}
}).to("newone11", Produced.with(Serdes.String(), orderMsgSerde));
I realised that I had set StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG to 0 and also set the default commit interval of 1000ms. Changing this value helps me to some extent get the windowing working

How to aggregate data hourly?

Whenever a user favorites some content on our site we collect the events and what we were planning to do is to hourly commit the aggregated favorites of a content and update the total favorite count in the DB.
We were evaluating Kafka Streams. Followed the word count example. Our topology is simple, produce to a topic A and read and commit aggregated data to another topic B. Then consume events from Topic B every hour and commit in the DB.
#Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public StreamsConfig kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "favorite-streams");
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG, WallclockTimestampExtractor.class.getName());
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, brokerAddress);
return new StreamsConfig(props);
}
#Bean
public KStream<String, String> kStream(StreamsBuilder kStreamBuilder) {
StreamsBuilder builder = streamBuilder();
KStream<String, String> source = builder.stream(topic);
source.flatMapValues(value -> Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+")))
.groupBy((key, value) -> value)
.count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>> as("counts-store")).toStream()
.to(topic + "-grouped", Produced.with(Serdes.String(), Serdes.Long()));
Topology topology = builder.build();
KafkaStreams streams = new KafkaStreams(topology, kStreamsConfigs());
streams.start();
return source;
}
#Bean
public StreamsBuilder streamBuilder() {
return new StreamsBuilder();
}
However when I consume this Topic B it gives me aggregated data from the beginning. My question is that can we have some provision wherein I can consume the previous hours grouped data and then commit to DB and then Kakfa forgets about the previous hours data and gives new data each hour rather than cumulative sum. Is the design topology correct or can we do something better?
If you want to get one aggregation result per hour, you can use a windowed aggregation with a window size of 1 hour.
stream.groupBy(...)
.windowedBy(TimeWindow.of(1 *3600 * 1000))
.count(...)
Check the docs for more details: https://docs.confluent.io/current/streams/developer-guide/dsl-api.html#windowing
The output type is Windowed<String> for the key (not String). You need to provide a custom Window<String> Serde, or convert the key type. Consult SessionWindowsExample.

How to send final kafka-streams aggregation result of a time windowed KTable?

What I'd like to do is this:
Consume records from a numbers topic (Long's)
Aggregate (count) the values for each 5 sec window
Send the FINAL aggregation result to another topic
My code looks like this:
KStream<String, Long> longs = builder.stream(
Serdes.String(), Serdes.Long(), "longs");
// In one ktable, count by key, on a five second tumbling window.
KTable<Windowed<String>, Long> longCounts =
longs.countByKey(TimeWindows.of("longCounts", 5000L));
// Finally, sink to the long-avgs topic.
longCounts.toStream((wk, v) -> wk.key())
.to("long-counts");
It looks like everything works as expected, but the aggregations are sent to the destination topic for each incoming record. My question is how can I send only the final aggregation result of each window?
In Kafka Streams there is no such thing as a "final aggregation". Windows are kept open all the time to handle out-of-order records that arrive after the window end-time passed. However, windows are not kept forever. They get discarded once their retention time expires. There is no special action as to when a window gets discarded.
See Confluent documentation for more details: http://docs.confluent.io/current/streams/
Thus, for each update to an aggregation, a result record is produced (because Kafka Streams also update the aggregation result on out-of-order records). Your "final result" would be the latest result record (before a window gets discarded). Depending on your use case, manual de-duplication would be a way to resolve the issue (using lower lever API, transform() or process())
This blog post might help, too: https://timothyrenner.github.io/engineering/2016/08/11/kafka-streams-not-looking-at-facebook.html
Another blog post addressing this issue without using punctuations: http://blog.inovatrend.com/2018/03/making-of-message-gateway-with-kafka.html
Update
With KIP-328, a KTable#suppress() operator is added, that will allow to suppress consecutive updates in a strict manner and to emit a single result record per window; the tradeoff is an increase latency.
From Kafka Streams version 2.1, you can achieve this using suppress.
There is an example from the mentioned apache Kafka Streams documentation that sends an alert when a user has less than three events in an hour:
KGroupedStream<UserId, Event> grouped = ...;
grouped
.windowedBy(TimeWindows.of(Duration.ofHours(1)).grace(ofMinutes(10)))
.count()
.suppress(Suppressed.untilWindowCloses(unbounded()))
.filter((windowedUserId, count) -> count < 3)
.toStream()
.foreach((windowedUserId, count) -> sendAlert(windowedUserId.window(), windowedUserId.key(), count));
As mentioned in the update of this answer, you should be aware of the tradeoff. Moreover, note that suppress() is based on event-time.
I faced the issue, but I solve this problem to add grace(0) after the fixed window and using Suppressed API
public void process(KStream<SensorKeyDTO, SensorDataDTO> stream) {
buildAggregateMetricsBySensor(stream)
.to(outputTopic, Produced.with(String(), new SensorAggregateMetricsSerde()));
}
private KStream<String, SensorAggregateMetricsDTO> buildAggregateMetricsBySensor(KStream<SensorKeyDTO, SensorDataDTO> stream) {
return stream
.map((key, val) -> new KeyValue<>(val.getId(), val))
.groupByKey(Grouped.with(String(), new SensorDataSerde()))
.windowedBy(TimeWindows.of(Duration.ofMinutes(WINDOW_SIZE_IN_MINUTES)).grace(Duration.ofMillis(0)))
.aggregate(SensorAggregateMetricsDTO::new,
(String k, SensorDataDTO v, SensorAggregateMetricsDTO va) -> aggregateData(v, va),
buildWindowPersistentStore())
.suppress(Suppressed.untilWindowCloses(unbounded()))
.toStream()
.map((key, value) -> KeyValue.pair(key.key(), value));
}
private Materialized<String, SensorAggregateMetricsDTO, WindowStore<Bytes, byte[]>> buildWindowPersistentStore() {
return Materialized
.<String, SensorAggregateMetricsDTO, WindowStore<Bytes, byte[]>>as(WINDOW_STORE_NAME)
.withKeySerde(String())
.withValueSerde(new SensorAggregateMetricsSerde());
}
Here you can see the result