Scheme racket question about finding vowels in str - racket

I tried to write a code about get-vowels and its running 100% but I'm trying to show these 4 output,
I just want to show these 4 output as well and I couldn't find a solution.
> (define vowels (string->list "aeiouyæøå"))
> (define (vowel? c)
(member c vowels))
> (define (filter p xs)
(define (more) (filter p (cdr xs)))
(cond
((null? xs) '())
((p (car xs)) (cons (car xs) (more)))
(else (more))))
> (define (count-vowels s)
(length (filter vowel? (string->list s))))
> (display (count-vowels "foobarbaz"))
4
example:
output:
4
"ooaa"

You shouldn't name a procedure filter, it clashes with a built-in procedure that does exactly the thing that you intend. In fact, you just need to delete your filter implementation and it'll work :)
(define vowels (string->list "aeiouyæøå"))
(define (vowel? c)
(member c vowels))
(define (count-vowels s)
(length (filter vowel? (string->list s))))
; there's a bit of code duplication here, you could
; refactor it if you want, to avoid repeating yourself
(define (extract-vowels s)
(list->string (filter vowel? (string->list s))))
(count-vowels "foobarbaz")
=> 4
(extract-vowels "foobarbaz")
=> "ooaa"

Related

Use function within a function

I have a function called clean-up which basically does what the already available flatten function does. I then have a function called multiplier, which takes in a list and multiplies all the numbers within it. The one issue is that sometimes there could be a weird syntax for the list used in multiplier, and it doesn't multiply every number together. For example:
Example Input
(multiplier '((1 (2 3)) 4 5 (6)))
Correct Output
720
My Output
*: contract violation
expected: number?
given: '(6 . 1)
argument position: 2nd
other arguments...
We don't like errors now do we? This multiplier function works in a normal-looking list, something like (multiplier '(1 2 3 4 5 6)). So I wrote the clean-up function to turn some confusing-looking list into a normal-looking list. However, I don't know how to call it to clean-up my list before trying to parse through and do the multiplication. I can verify that the clean-up function does its job perfectly. Can anyone help? Here is the code I have for both:
(define (clean-up s)
(cond [(null? s) '()]
[(not (pair? s)) (list s)]
[else (append (clean-up (car s)) (clean-up (cdr s)))]
))
(define multiplier
(lambda (s)
(cond [(null? s) 1]
[(number? (car s)) (* (car s) (multiplier(cdr s)))]
[list? (car s) (append (car s) (multiplier(cdr s)))]
[else (multiplier (cdr s))]
)))
There is no need for the clean-up function to solve the problems encountered in multiplier. However, you could call clean-up on the input first simply with:
scratch.rkt> (multiplier (clean-up '((1 (2 3)) 4 5 (6))))
720
Or, you could create a helper function to do this for you:
(define (multiplier-workaround s)
(multiplier (clean-up s)))
scratch.rkt> (multiplier-workaround '((1 (2 3)) 4 5 (6)))
720
A workaround like this might help you out in a pinch, but it does not fix the real problems in the code.
Some of the problems here may be easier to see with better code formatting. It is bad style to leave hanging parentheses in Lisps as if these are C-style languages; but that probably isn't causing you problems here. Yet it is good style to show the structure of your expressions using indentation. With proper indentation it becomes apparent that there are missing parentheses in the line with the list? predicate:
(define multiplier
(lambda (s)
(cond [(null? s) 1]
[(number? (car s))
(* (car s) (multiplier(cdr s)))]
[list? (car s)
(append (car s) (multiplier (cdr s)))]
[else
(multiplier (cdr s))])))
Further investigation of that line shows that the code is attempting to append (car s) to the result of (multiplier (cdr s)); yet, (car s) is now known to be a list, and multiplier is supposed to return a number! The intention here was surely to multiply the result of calling multiply on the list (car s) together with the result of (multiplier (cdr s)):
(define multiplier
(lambda (s)
(cond [(null? s) 1]
[(number? (car s))
(* (car s)
(multiplier (cdr s)))]
[(list? (car s))
(* (multiplier (car s))
(multiplier (cdr s)))]
[else
(multiplier (cdr s))])))
It isn't clear why the else branch is needed, unless OP wants to be able to process lists such as (a (1 (2 b) (3 (c (4 5) 6) d) e))). For code that is expecting nested lists of numbers, this would be fine:
(define multiplier-2
(lambda (s)
(cond [(null? s) 1]
[(number? (car s))
(* (car s) (multiplier (cdr s)))]
[else
(* (multiplier (car s))
(multiplier (cdr s)))])))
Both functions now work for OP example expression, and the corrected OP code also works for input with spurious values:
scratch.rkt> (multiplier '((1 (2 3)) 4 5 (6)))
720
scratch.rkt> (multiplier-2 '((1 (2 3)) 4 5 (6)))
720
scratch.rkt> (multiplier '(a (1 (2 3)) 4 5 b (6) c))
720
I think buildin flatten have more error handling.
(define (multiplier lst)
(apply * (filter number? (flatten lst))))
;;; TEST
(define test-lst1 (list + (vector 1) '(1 (2 3) c) "w" 4 5 '(6) + - * sqr))
(define test-lst2 '(1(a 2(3 b (c 4(d 5 e(6) (f)))))))
(multiplier test-lst1) ; 720
(multiplier test-lst2) ; 720

Simplify symbolic expressions

I am new in Lisp and i need some help.
I need to simplify next expressions:
from (+ (+ A B) C) to (+ A B C)
and from (- (- A B) C) to (- A B C).
If you could help me with one of them I'll understand how i need to do this to the next one.
Thanks a lot.
Assuming you have an input that matches this pattern, (+ e1 ... en), you want to recursively simplify all e1 to en, which gives you s1, ..., sn, and then extract all the si that start with a + to move their arguments one level up, to the simplified expression you are building.
An expression e matches the above pattern if (and (consp e) (eq '+ (car e))).
Then, all the ei are just given by the list that is (cdr e).
Consider the (+) case, how could you simplify it?
To apply a function f to a list of values, call (mapcar #'f list).
To split a list into two lists, based on a predicate p, you might use a loop:
(let ((sat nil) (unsat nil))
(dolist (x list (values sat unsat))
(if (funcall predicate x)
(push x sat)
(push x unsat))))
There is a purely functional way to write this, can you figure it out?
Here is a trivial simplifier written in Racket, with an implementation of a rather mindless simplifier for +. Note that this is not intended as anything serious: it's just what I typed in when I was thinking about this question.
This uses Racket's pattern matching, probably in a naïve way, to do some of the work.
(define/match (simplify expression)
;; simplifier driver
(((cons op args))
;; An operator with some arguments
;; Note that this assumes that the arguments to operators are always
;; expressions to simplify, so the recursive level can be here
(simplify-op op (map simplify args)))
((expr)
;; anything else
expr))
(define op-table (make-hash))
(define-syntax-rule (define-op-simplifier (op args) form ...)
;; Define a simplifier for op with arguments args
(hash-set! op-table 'op (λ (args) form ...)))
(define (simplify-op op args)
;; Note the slightly arcane fallback: you need to wrap it in a thunk
;; so hash-ref does not try to call it.
((hash-ref op-table op (thunk (λ (args) (cons op args)))) args))
(define-op-simplifier (+ exprs)
;; Simplify (+ ...) by flattening + in its arguments
(let loop ([ftail exprs]
[results '()])
(if (null? ftail)
`(+ ,#(reverse results))
(loop (rest ftail)
(match (first ftail)
[(cons '+ addends)
(append (reverse addends) results)]
[expr (cons expr results)])))))
It is possible to be more aggressive than this. For instance we can coalesce runs of literal numbers, so we can simplify (+ 1 2 3 a 4) to
(+ 6 a 4) (note it is not safe in general to further simplify this to (+ 10 a) unless all arithmetic is exact). Here is a function which does this coalescing for for + and *:
(define (coalesce-literal-numbers f elts)
;; coalesce runs of literal numbers for an operator f.
;; This relies on the fact that (f) returns a good identity for f
;; (so in particular it returns an exact number). Thisis true for Racket
;; and CL and I think any Lisp worth its salt.
;;
;; Note that it's important here that (eqv? 1 1.0) is false.
;;;
(define id (f))
(let loop ([tail elts]
[accum id]
[results '()])
(cond [(null? tail)
(if (not (eqv? accum id))
(reverse (cons accum results))
(reverse results))]
[(number? (first tail))
(loop (rest tail)
(f accum (first tail))
results)]
[(eqv? accum id)
(loop (rest tail)
accum
(cons (first tail) results))]
[else
(loop (rest tail)
id
(list* (first tail) accum results))])))
And here is a modified simplifier for + which uses this. As well as coalescing it notices that (+ x) can be simplified to x.
(define-op-simplifier (+ exprs)
;; Simplify (+ ...) by flattening + in its arguments
(let loop ([ftail exprs]
[results '()])
(if (null? ftail)
(let ([coalesced (coalesce-literal-numbers + (reverse results))])
(match coalesced
[(list something)
something]
[exprs
`(+ ,#exprs)]))
(loop (rest ftail)
(match (first ftail)
[(cons '+ addends)
(append (reverse addends) results)]
[expr (cons expr results)])))))
Here is an example of using this enhanced simplifier:
> (simplify 'a)
'a
> (simplify 1)
1
> (simplify '(+ 1 a))
'(+ 1 a)
> (simplify '(+ a (+ b c)))
'(+ a b c)
> (simplify '(+ 1 (+ 3 c) 4))
'(+ 4 c 4)
> (simplify '(+ 1 2 3))
6
For yet more value you can notice that the simplifier for * is really the same, and change things to this:
(define (simplify-arith-op op fn exprs)
(let loop ([ftail exprs]
[results '()])
(if (null? ftail)
(let ([coalesced (coalesce-literal-numbers fn (reverse results))])
(match coalesced
[(list something)
something]
['()
(fn)]
[exprs
`(,op ,#exprs)]))
(loop (rest ftail)
(match (first ftail)
[(cons the-op addends)
#:when (eqv? the-op op)
(append (reverse addends) results)]
[expr (cons expr results)])))))
(define-op-simplifier (+ exprs)
(simplify-arith-op '+ + exprs))
(define-op-simplifier (* exprs)
(simplify-arith-op '* * exprs))
And now
(simplify '(+ a (* 1 2 (+ 4 5)) (* 3 4) 6 (* b)))
'(+ a 36 b)
Which is reasonably neat.
You can go further than this, For instance when coalescing numbers for an operator you can simply elide sequences of the identity for that operator: (* 1 1 a 1 1 b) can be simplified to (* a b), not (* 1 a 1 b). It may seem silly to do that: who would ever write such an expression, but they can quite easily occur when simplifying complicated expressions.
There is a gist of an elaborated version of this code. It may still be buggy.

How the map function implemeted in racket

How does the map function implemented in racket and why, recursion or iteration.
Maybe some implementation example
How to implement map
The map function walks a list (or multiple lists), and applies a given function to every value of a list. For example mappiing add1 to a list results in:
> (map add1 '(1 2 3 4))
'(2 3 4 5)
As such, you can implement map as a recursive function:
(define (map func lst)
(if (empty? lst)
'()
(cons (func (first lst)) (map func (rest lst)))))
Of course, map can accept any number of arguments, with each element passed to the given prop. For example, you can zip two lists together using map list:
> (map list '(1 2 3) '(a b c))
'((1 a) (2 b) (3 c))
To implement this variable arity map, we need to make use of the apply function:
(define (map proc lst . lst*)
(if (empty? lst)
'()
(cons (apply proc (first lst) (map first lst*))
(apply map proc (rest lst) (map rest lst*)))))
Now, this does assume all of the given lists have the same length, otherwise you will get some unexpected behavior. To do that right you would want to run empty? on all lists, not just the first one. But...when you use it, you get:
> (map list '(a b c) '(1 2 3))
'((a 1) (b 2) (c 3))
Note that map here calls itself recursively 3 times. A faster implementation might do some unrolling to run faster. A better implementation would also do proper error checking, which I have elided for this example.
How Racket's map is implemented
If you open up DrRacket (using the latest Racket 7 nightly) and make the following file:
#lang racket
map
You can now right click on map and select Open Defining File. From here, you can see that map is renamed from the definition map2. The definition of which is:
(define map2
(let ([map
(case-lambda
[(f l)
(if (or-unsafe (and (procedure? f)
(procedure-arity-includes? f 1)
(list? l)))
(let loop ([l l])
(cond
[(null? l) null]
[else
(let ([r (cdr l)]) ; so `l` is not necessarily retained during `f`
(cons (f (car l)) (loop r)))]))
(gen-map f (list l)))]
[(f l1 l2)
(if (or-unsafe
(and (procedure? f)
(procedure-arity-includes? f 2)
(list? l1)
(list? l2)
(= (length l1) (length l2))))
(let loop ([l1 l1] [l2 l2])
(cond
[(null? l1) null]
[else
(let ([r1 (cdr l1)]
[r2 (cdr l2)])
(cons (f (car l1) (car l2))
(loop r1 r2)))]))
(gen-map f (list l1 l2)))]
[(f l . args) (gen-map f (cons l args))])])
map))

How do I find the index of an element in a list in Racket?

This is trivial implement of course, but I feel there is certainly something built in to Racket that does this. Am I correct in that intuition, and if so, what is the function?
Strangely, there isn't a built-in procedure in Racket for finding the 0-based index of an element in a list (the opposite procedure does exist, it's called list-ref). However, it's not hard to implement efficiently:
(define (index-of lst ele)
(let loop ((lst lst)
(idx 0))
(cond ((empty? lst) #f)
((equal? (first lst) ele) idx)
(else (loop (rest lst) (add1 idx))))))
But there is a similar procedure in srfi/1, it's called list-index and you can get the desired effect by passing the right parameters:
(require srfi/1)
(list-index (curry equal? 3) '(1 2 3 4 5))
=> 2
(list-index (curry equal? 6) '(1 2 3 4 5))
=> #f
UPDATE
As of Racket 6.7, index-of is now part of the standard library. Enjoy!
Here's a very simple implementation:
(define (index-of l x)
(for/or ([y l] [i (in-naturals)] #:when (equal? x y)) i))
And yes, something like this should be added to the standard library, but it's just a little tricky to do so nobody got there yet.
Note, however, that it's a feature that is very rarely useful -- since lists are usually taken as a sequence that is deconstructed using only the first/rest idiom rather than directly accessing elements. More than that, if you have a use for it and you're a newbie, then my first guess will be that you're misusing lists. Given that, the addition of such a function is likely to trip such newbies by making it more accessible. (But it will still be added, eventually.)
One can also use a built-in function 'member' which gives a sublist starting with the required item or #f if item does not exist in the list. Following compares the lengths of original list and the sublist returned by member:
(define (indexof n l)
(define sl (member n l))
(if sl
(- (length l)
(length sl))
#f))
For many situations, one may want indexes of all occurrences of item in the list. One can get a list of all indexes as follows:
(define (indexes_of1 x l)
(let loop ((l l)
(ol '())
(idx 0))
(cond
[(empty? l) (reverse ol)]
[(equal? (first l) x)
(loop (rest l)
(cons idx ol)
(add1 idx))]
[else
(loop (rest l)
ol
(add1 idx))])))
For/list can also be used for this:
(define (indexes_of2 x l)
(for/list ((i l)
(n (in-naturals))
#:when (equal? i x))
n))
Testing:
(indexes_of1 'a '(a b c a d e a f g))
(indexes_of2 'a '(a b c a d e a f g))
Output:
'(0 3 6)
'(0 3 6)

Count of atoms on the each level, Scheme

Please, help me with one simple exercise on the Scheme.
Write function, that return count of atoms on the each level in the
list. For example:
(a (b (c (d e (f) k 1 5) e))) –> ((1 1) (2 1) (3 2) (4 5) (5 1))
My Solution:
(define (atom? x)
(and (not (pair? x)) (not (null? x))))
(define (count L)
(cond ((null? L) 0)
((pair? (car L))
(count (cdr L)))
(else
(+ 1 (count (cdr L))))))
(define (fun L level)
(cons
(list level (count L))
(ololo L level)))
(define (ololo L level)
(if (null? L)
'()
(if (atom? (car L))
(ololo (cdr L) level)
(fun (car L) (+ level 1)))))
(fun '(a (b (c (d e (f) k 1 5) e))) 1)
It's work fine, but give not correctly answer for this list:
(a (b (c (d e (f) (k) 1 5) e)))
is:
((1 1) (2 1) (3 2) (4 4) (5 1))
But we assume that 'f' and 'k' on the one level, and answer must be:
((1 1) (2 1) (3 2) (4 4) (5 2))
How should I edit the code to make it work right?
UPD (29.10.12):
My final solution:
(define A '(a (b (c (d e (f) k 1 5) e))))
(define (atom? x)
(and (not (pair? x)) (not (null? x))))
(define (unite L res)
(if (null? L) (reverse res)
(unite (cdr L) (cons (car L) res))))
(define (count-atoms L answ)
(cond ((null? L) answ)
((pair? (car L))
(count-atoms (cdr L) answ))
(else
(count-atoms (cdr L) (+ answ 1)))))
(define (del-atoms L answ)
(cond ((null? L) answ)
((list? (car L))
(begin
(del-atoms (cdr L) (unite (car L) answ))))
(else
(del-atoms (cdr L) answ))))
(define (count L)
(define (countme L level answ)
(if (null? L) (reverse answ)
(countme (del-atoms L '()) (+ level 1) (cons (cons level (cons (count-atoms L 0) '())) answ))))
(countme L 1 '()))
(count A)
What can you say about this?
Do you know what you get if you run this?
(fun '(a (b (c (d e (f) k 1 5) e)) (a (b (c)))) 1)
You get this:
((1 1) (2 1) (3 2) (4 5) (5 1))
The whole extra nested structure that I added on the right has been ignored. Here is why...
Each recursion of your function does two things:
Count all the atoms at the current "level"
Move down the level till you find an s-expression that is a pair (well, not an atom)
Once it finds a nested pair, it calls itself on that. And so on
What happens in oLoLo when fun returns from the first nested pair? Why, it returns! It does not keep going down the list to find another.
Your function will never find more than the first list at any level. And if it did, what would you to do add the count from the first list at that level to the second? You need to think carefully about how you recur completely through a list containing multiple nested lists and about how you could preserve information at each level. There's more than one way to do it, but you haven't hit on any of them yet.
Note that depending on your implementation, the library used here may need to be imported in some other way. It might be painstakingly difficult to find the way it has to be imported and what are the exact names of the functions you want to use. Some would have it as filter and reduce-left instead. require-extension may or may not be Guile-specific, I don't really know.
(require-extension (srfi 1))
(define (count-atoms source-list)
(define (%atom? x) (not (or (pair? x) (null? x))))
(define (%count-atoms source-list level)
(if (not (null? source-list))
(cons (list level (count %atom? source-list))
(%count-atoms (reduce append '()
(filter-map
(lambda (x) (if (%atom? x) '() x))
source-list)) (1+ level))) '()))
(%count-atoms source-list 1))
And, of course, as I mentioned before, it would be best to do this with hash-tables. Doing it with lists may have some didactic effect. But I have a very strong opposition to didactic effects that make you write essentially bad code.