I'm having the following documents in a collection
[
{
"category":"category1",
"type":"type1",
"item":"item1",
"name":"testname",
"settings":{
"enable":"true",
"mode":"1"
},
"status":"active"
},
{
"category":"category1",
"type":"type1",
"item":"item1",
"name":"testname2",
"settings":{
"enable":"true",
"mode":"1"
},
"status":"inactive"
},
{
"category":"category1",
"type":"type1",
"item":"item2",
"name":"testname3",
"settings":{
"enable":"true",
"mode":"1"
},
"status":"active"
},
{
"category":"category2",
"type":"type2",
"item":"item3",
"name":"testname4",
"settings":{
"enable":"true",
"mode":"1"
},
"status":"active"
},
{
"category":"category3",
"type":"type4",
"item":"item5",
"name":"testname5",
"settings":{
"enable":"true",
"mode":"1"
},
"status":"active"
}
]
I want to convert this into nested objects with four level. Expecting output like below
{
"category1":{
"type1":{
"item1":{
"active":[
{
"name":"testname",
"settings":{
"enable":"true",
"mode":"1"
}
}
],
"inactive":[
{
"name":"testname2",
"settings":{
"enable":"true",
"mode":"1"
}
}
]
},
"item2":{
"active":[
{
"name":"testname3",
"settings":{
"enable":"true",
"mode":"1"
}
}
]
}
}
},
"category2":{
"type2":{
"item3":{
"active":[
{
"name":"testname4",
"settings":{
"enable":"true",
"mode":"1"
}
}
]
}
}
},
"category3":{
"type4":{
"item4":{
"active":[
{
"name":"testname5",
"settings":{
"enable":"true",
"mode":"1"
}
}
]
}
}
}
}
I'm able to convert into two levels with aggregate and replaceRoot option. Unable to convert into four levels after replacing the root. How to achieve this output using mongo aggregate>
I'm not sure exactly how your pipeline looks as you didn't include it, however here is how I would do it by using $arrayToObject, $group and $replaceRoot to manipulate the structure into the required format:
db.collection.aggregate([
{
$group: {
_id: {
category: "$category",
type: "$type",
item: "$item",
status: "$status"
},
data: {
$push: {
name: "$name",
settings: "$settings"
},
}
}
},
{
$group: {
_id: {
category: "$_id.category",
type: "$_id.type",
item: "$_id.item"
},
statusData: {
$push: {
data: "$data",
status: "$_id.status"
}
}
}
},
{
$replaceRoot: {
newRoot: {
"$mergeObjects": [
{
_id: "$_id"
},
{
data: {
"$arrayToObject": {
$map: {
input: "$statusData",
as: "datum",
in: {
k: "$$datum.status",
v: "$$datum.data"
}
}
}
}
}
]
}
}
},
{
$sort: {
"_id.item": 1
}
},
{
$group: {
_id: {
category: "$_id.category",
type: "$_id.type"
},
items: {
$push: {
"$arrayToObject": [
[
{
k: "$_id.item",
v: "$data"
}
]
]
}
}
}
},
{
$sort: {
"_id.type": 1
}
},
{
$replaceRoot: {
newRoot: {
"$arrayToObject": [
[
{
k: "$_id.category",
v: {
"$arrayToObject": [
[
{
k: "$_id.type",
v: {
"$mergeObjects": "$items"
}
}
]
]
}
}
]
]
}
}
}
])
Mongo Playground
Related
I am having a similar collection
db={
collectionA: [
{
"id": ObjectId("63b7c24c06ebe7a8fd11777b"),
"uniqueRefId": "UUID-2023-0001",
"products": [
{
"productIndex": 1,
"isProdApproved": false,
"productCategory": ObjectId("63b7c24c06ebe7a8fd11777b"),
"productOwners": [
{
_id: ObjectId("63b7c2fd06ebe7a8fd117781"),
iApproved: false
},
{
_id: ObjectId("63b7c2fd06ebe7a8fd117782"),
iApproved: false
}
]
},
{
"productIndex": 2,
"isProdApproved": false,
"productCategory": ObjectId("63b7c24c06ebe7a8fd11777b"),
"productOwners": [
{
_id: ObjectId("63b7c2fd06ebe7a8fd117781"),
iApproved: false
},
{
_id: ObjectId("63b7c2fd06ebe7a8fd117783"),
iApproved: false
}
]
},
{
"productIndex": 3,
"productCategory": "",
"productOwners": ""
}
]
}
]
}
I want to find the productOwner whose _id is 63b7c2fd06ebe7a8fd117781 in the productOwners and update the isApproved and isprodApproved to true. Other data will remain as it is.
I have tried this but it is only updating the first occurance
db.collectionA.update(
{
_id: ObjectId('63b7c24c06ebe7a8fd11777b'),
'products.productOwners._id': ObjectId('63b7c2fd06ebe7a8fd117781'),
},
{ $set: { 'products.$.productOwners.$[x].isApproved': true } },
{ arrayFilters: [{ 'x._id': ObjectId('63b7c2fd06ebe7a8fd117781') }] }
);
This one should work:
db.collection.updateMany({},
[
{
$set: {
products: {
$map: {
input: "$products",
as: "product",
in: {
$cond: {
if: { $eq: [{ $type: "$$product.productOwners" }, "array"] },
then: {
$mergeObjects: [
"$$product",
{ isProdApproved: { $in: [ObjectId("63b7c2fd06ebe7a8fd117781"), "$$product.productOwners._id"] } },
{
productOwners: {
$map: {
input: "$$product.productOwners",
as: 'owner',
in: {
$mergeObjects: [
"$$owner",
{ iApproved: { $eq: ["$$owner._id", ObjectId("63b7c2fd06ebe7a8fd117781")] } }
]
}
}
}
}
]
},
else: "$$product"
}
}
}
}
}
}
]
)
However, the data seem to be redundant. Better update only products.productOwners.iApproved and then derive products.isProdApproved from nested elements:
db.collection.aggregate([
{
$set: {
products: {
$map: {
input: "$products",
as: "product",
in: {
$cond: {
if: { $eq: [{ $type: "$$product.productOwners" }, "array"] },
then: {
$mergeObjects: [
"$$product",
{ isProdApproved: { $anyElementTrue: ["$$product.productOwners.iApproved"] } },
]
},
else: "$$product"
}
}
}
}
}
}
])
I have collection like this:
{
"labels": [{
"description": "Dog"
}, {
"description": "Red"
}, {
"description": "XXX"
}]
}
{
"labels": [{
"description": "Cat"
}, {
"description": "XXX"
}, {
"description": "Yellow"
}]
}
{
"labels": [{
"description": "Dog"
}, {
"description": "Red"
}, {
"description": "Yellow"
}]
}
{
"labels": [{
"description": "Bird"
}, {
"description": "XXX"
}, {
"description": "XXX"
}]
}
I want to filter for example only "Red" and "Yellow" colors from ALL elements and output document like this:
// because "Dog" appears 2 times so total = 2
{
description: "Dog",
total: 2,
colors: [
{ "_id": "Red", total: 2 },
{ "_id": "Yellow", total: 1 }
]
}
{
description: "Cat",
total: 1,
colors: [
{ "_id": "Yellow", total: 1 }
]
}
{
description: "Bird",
total: 1,
colors: []
}
{
description: "Red",
total: 2,
colors: [
{ _id: "Yellow", total: 1 }
]
}
{
description: "XXX",
total: 4,
colors: [
{ _id: "Yellow", total: 1 }
]
}
I can do this by using collection.distinct('labels.description') and then iterating through every single element + make a separate collection.count({ 'labels.description': 'Dog' }) like this:
for (...)
db.collection.aggregate([
{
"$match": {
"labels.description": valueFromLoop // (e.g. Dog)
}
},
{ $unwind : "$labels" },
{
"$group": {
"_id": "$labels.description",
"count": { "$sum": 1 }
}
},
{
"$match": {
"$or": [
{ "_id": "Red" },
{ "_id": "Yellow" }
]
}
},
{
"$sort": {
"count": -1
}
}
])
I want to do this in a single aggregation or mapReduce so that I could easily output it to new collection using $out instead of using Bulk operations separately, however I don't know if it's possible.
Try this:
let filter = ["Red", "Yellow"];
db.testcollection.aggregate([
{
$addFields: { bkp: "$labels" }
},
{ $unwind: "$labels" },
{
$addFields: {
bkp: {
$filter: {
input: "$bkp",
as: "item",
cond: {
$and: [
{ $ne: ["$$item.description", "$labels.description"] },
{ $in: ["$$item.description", filter] }
]
}
}
}
}
},
{
$unwind: {
path: "$bkp",
preserveNullAndEmptyArrays: true
}
},
{
$group: {
_id: {
key1: "$labels.description",
key2: { $ifNull: ["$bkp.description", false] }
},
total: { $sum: 1 }
}
},
{
$group: {
_id: "$_id.key1",
description: { $first: "$_id.key1" },
total: {
$sum: {
$cond: {
if: { $first: [["$_id.key2"]] },
then: 1,
else: "$total"
}
}
},
colors: {
$push: {
$cond: {
if: { $first: [["$_id.key2"]] },
then: {
_id: "$_id.key2",
total: "$total"
},
else: "$$REMOVE"
}
}
}
}
},
{ $project: { _id: 0 } }
]);
For some reason with code from both answers it does not count all tags properly.
I'm posting what works:
db.collection.aggregate([
{
$project: {
labels: 1,
result: {
$filter: {
input: "$labels",
as: "label",
cond: {
$or: [
{ $eq: ["$$label.description", "Blue"] },
{ $eq: ["$$label.description", "Red"] },
{ $eq: ["$$label.description", "Black-and-white"] },
{ $eq: ["$$label.description", "Purple"] },
{ $eq: ["$$label.description", "Orange"] },
{ $eq: ["$$label.description", "Yellow"] },
{ $eq: ["$$label.description", "Green"] },
{ $eq: ["$$label.description", "Teal"] }
]
}
}
}
}
},
{
$unwind: "$labels"
},
{
"$group": {
_id: "$labels.description",
x: {
$push: "$result.description"
},
total: { "$sum": 1 }
}
},
{
$project: {
x: {
$reduce: {
input: '$x',
initialValue: [],
in: {$concatArrays: ['$$value', '$$this']}
}
},
total: 1
}
},
{
$project: {
x: 1,
y: { $setUnion: "$x" },
total: 1
}
},
{
$project: {
_id: 0,
description: "$_id",
"colors": {
$map: {
input: "$y",
as: "item",
in: {
_id: "$$item",
count: {
$size: {
$filter: {
input: "$x",
as: "itemx",
cond: {
$eq: ["$$item", "$$itemx"]
}
}
}
}
}
}
},
total: 1
}
},
{
$out: "backgrounds_meta"
}
])
db.test2.aggregate([
{
$project: {
labels:1,
colours: {
$filter: {
input: "$labels",
as: "label",
cond: {
$or: [
{$eq:["Yellow","$$label.description"]},
{$eq:["Red", "$$label.description"]}
]
}
}
}
}
},
{$unwind:"$labels"},
{$group:{
_id: "$labels.description",
total: {$sum:1},
colours: {$addToSet:"$colours.description"}
}},
{
$project:{
_id:0,
description:"$_id",
total:1,
colours: {
$reduce:{
input: "$colours",
initialValue: [],
in: {$concatArrays: ["$$value", "$$this"]}
}
}
}
},
{
$unwind: {
path:"$colours",preserveNullAndEmptyArrays: true
}
},
{
$group:{
_id:{
description:"$description",
total:"$total",
colour:"$colours"
},
count: {
$sum: {$cond:[{$ifNull:["$colours",false]},1,0]}
}
}
},
{
$group:{
_id:{
description:"$_id.description",
total:"$_id.total"
},
colours: {
$push: {
$cond: [{$gt:["$count",0]},
{
"_id":"$_id.colour",
total:"$count"
},
"$$REMOVE"
]
}
}
}
},
{
$project: {
_id:0,
description: "$_id.description",
total: "$_id.total",
colours: 1
}
}
]);
**Edit In your answer, you are missing the Yellows for Red and Dog because you are taking the first item from $result with $arrayElemAt: ["$result.description", 0].
If description is a colour, do you also want to include the counts for itself in colours?
Never mind, you've updated the answer
I have a collection that looks like below:
[
{
"orderNum": "100",
"createdTime": ISODate("2020-12-01T21:00:00.000Z"),
"amount": 100,
"memo": "100memo",
"list": [
1
]
},
{
"orderNum": "200",
"createdTime": ISODate("2020-12-01T21:01:00.000Z"),
"amount": 200,
"memo": "200memo",
"list": [
1,
2
]
},
{
"orderNum": "300",
"createdTime": ISODate("2020-12-01T21:02:00.000Z"),
"amount": 300,
"memo": "300memo"
},
{
"orderNum": "400",
"createdTime": ISODate("2020-12-01T21:03:00.000Z"),
"amount": 400,
"memo": "400memo"
},
]
and I'm trying to get the total amount of orders that were created before order# 300 (so order#100 and #200, total amount is 300).
Does anyone know how to get it via Mongoose?
You can use this one:
db.collection.aggregate([
{ $sort: { orderNum: 1 } }, // by default the order of documents in a collection is undetermined
{ $group: { _id: null, data: { $push: "$$ROOT" } } }, // put all documents into one document
{ $set: { data: { $slice: ["$data", { $indexOfArray: ["$data.orderNum", "300"] }] } } }, // cut desired elementes from array
{ $unwind: "$data" }, // transform back to documents
{ $replaceRoot: { newRoot: "$data" } },
{ $group: { _id: null, total_amount: { $sum: "$amount" } } } // make summary
])
Actually it is not needed to $unwind and $group, so the shortcut would be this:
db.collection.aggregate([
{ $sort: { orderNum: 1 } },
{ $group: { _id: null, data: { $push: "$$ROOT" } } },
{ $set: { data: { $slice: ["$data", { $indexOfArray: ["$data.orderNum", "300"] }] } } },
{ $project: { total_amount: { $sum: "$data.amount" } } }
])
But the answer from #turivishal is even better.
Update for additional field
{
$set: {
data: { $slice: ["$data", { $indexOfArray: ["$data.orderNum", "300"] }] },
memo: { $arrayElemAt: [ "$data.memo", { $indexOfArray: ["$data.orderNum", "300"] } ] }
}
}
or
{ $set: { data: { $slice: ["$data", { $indexOfArray: ["$data.orderNum", "300"] }] } } },
{ $set: { memo: { $last: { "$data.memo" } } },
$match orderNum less than 300
$group by null and get totalAmount using $sum of amount
YourSchemaModel.aggregate([
{ $match: { orderNum: { $lt: "300" } } },
{
$group: {
_id: null,
totalAmount: { $sum: "$amount" }
}
}
])
Playground
I want to find prev/next blog documents whose publish date is closest to the input document.
Below is the document structure.
Collection Examples (blog)
{
blogCode: "B0001",
publishDate: "2020-09-21"
},
{
blogCode: "B0002",
publishDate: "2020-09-22"
},
{
blogCode: "B0003",
publishDate: "2020-09-13"
},
{
blogCode: "B0004",
publishDate: "2020-09-24"
},
{
blogCode: "B0005",
publishDate: "2020-09-05"
}
If the input is blogCode = B0003
Expected output
{
blogCode: "B0005",
publishDate: "2020-09-05"
},
{
blogCode: "B0001",
publishDate: "2020-09-21"
}
How could I get the output result? In sql, it seems using ROW_NUMBER can solve my problem, however I can't find a solution to achieve the feature in MongoDB. The alternate solution may be reference to this answer (But, it seems inefficient). Maybe using mapReduce is another better solutions? I'm confused at the moment, please give me some help.
You can go like following.
We need to compare existing date with given date. So I used $facet to categorize both dates
The original data should be one Eg : B0003. So that I just get the first element of the origin[] array to compare with rest[] array
used $unwind to flat the rest[]
Substract to get the different between both dates
Again used $facet to find previous and next dates.
Then combined both to get your expected result
NOTE : The final array may have 0<elements<=2. The expected result given by you will not find out whether its a prev or next date if there is a one element. So my suggestion is add another field to say which date it is as the mongo playground shows
[{
$facet: {
origin: [{
$match: { blogCode: 'B0001' }
}],
rest: [{
$match: {
$expr: {
$ne: ['$blogCode','B0001']
}
}
}]
}
}, {
$project: {
origin: {
$arrayElemAt: ['$origin',0]
},
rest: 1
}
}, {
$unwind: {path: '$rest'}
}, {
$project: {
diff: {
$subtract: [{ $toDate: '$rest.publishDate' },{ $toDate: '$origin.publishDate'}]
},
rest: 1,
origin: 1
}
}, {
$facet: {
prev: [{
$sort: {diff: -1}
},
{
$match: {
diff: {$lt: 0 }
}
},
{
$limit: 1
},
{
$addFields:{"rest.type":"PREV"}
}
],
next: [{
$sort: { diff: 1 }
},
{
$match: {
diff: { $gt: 0 }
}
},
{
$limit: 1
},
{
$addFields:{"rest.type":"NEXT"}
}
]
}
}, {
$project: {
combined: {
$concatArrays: ["$prev", "$next"]
}
}
}, {
$unwind: {
path: "$combined"
}
}, {
$replaceRoot: {
newRoot: "$combined.rest"
}
}]
Working Mongo playground
Inspire for the solution of varman proposed. I also find another way to solve my problem by using includeArrayIndex.
[
{
$sort: {
"publishDate": 1
},
},
{
$group: {
_id: 1,
root: {
$push: "$$ROOT"
}
},
},
{
$unwind: {
path: "$root",
includeArrayIndex: "rownum"
}
},
{
$replaceRoot: {
newRoot: {
$mergeObjects: [
"$root",
{
rownum: "$rownum"
}
]
}
}
},
{
$facet: {
currRow: [
{
$match: {
blogCode: "B0004"
},
},
{
$project: {
rownum: 1
}
}
],
root: [
{
$match: {
blogCode: {
$exists: true
}
}
},
]
}
},
{
$project: {
currRow: {
$arrayElemAt: [
"$currRow",
0
]
},
root: 1
}
},
{
$project: {
rownum: {
prev: {
$add: [
"$currRow.rownum",
-1
]
},
next: {
$add: [
"$currRow.rownum",
1
]
}
},
root: 1
}
},
{
$unwind: "$root"
},
{
$facet: {
prev: [
{
$match: {
$expr: {
$eq: [
"$root.rownum",
"$rownum.prev"
]
}
}
},
{
$replaceRoot: {
newRoot: "$root"
}
}
],
next: [
{
$match: {
$expr: {
$eq: [
"$root.rownum",
"$rownum.next"
]
}
}
},
{
$replaceRoot: {
newRoot: "$root"
}
}
],
}
},
{
$project: {
prev: {
$arrayElemAt: [
"$prev",
0
]
},
next: {
$arrayElemAt: [
"$next",
0
]
},
}
},
]
Working Mongo playground
Provided I have following collections
Customers
[
{
uuid: "first",
culture: "it-it"
},
{
uuid: "second",
culture: "de-de"
}
]
Vehicles
[
{
model: "mymodel",
users: [
{
uuid: "first",
isOwner: true,
createdOn: "2019-05-15T06: 00: 00"
}
]
},
{
model: "mymodel",
users: [
{
uuid: "first",
isOwner: false,
createdOn: "2019-05-15T06: 00: 00"
},
{
uuid: "second",
isOwner: true,
createdOn: "2019-05-15T06: 00: 00"
}
]
}
]
And following query:
db.customers.aggregate([
{
$lookup: {
from: "vehicles",
let: {
uuid: "$uuid"
},
pipeline: [
{
$match: {
$expr: {
$in: [
"$$uuid",
"$users.uuid"
]
}
}
},
{
$project: {
model: 1,
users: {
$filter: {
input: "$users",
as: "user",
cond: {
$eq: [
"$$user.uuid",
"$$uuid"
]
}
}
}
}
},
{
$unwind: "$users"
},
{
$replaceRoot: {
newRoot: {
isOwner: "$users.isOwner",
createdOn: "$users.createdOn"
}
}
}
],
as: "vehicles"
}
},
{
$facet: {
"createdOn": [
{
$match: {
"vehicles": {
$elemMatch: {
isOwner: true,
$and: [
{
"createdOn": {
$gte: "2019-05-15T00: 00: 00"
}
},
{
"createdOn": {
$lt: "2019-05-16T00: 00: 00"
}
}
]
}
}
}
},
{
$project: {
culture: 1,
count: {
$size: "$vehicles"
}
}
},
{
$group: {
_id: 0,
"total": {
$sum: "$count"
}
}
}
]
}
},
{
$project: {
"CreatedOn": {
$arrayElemAt: [
"$CreatedOn.total",
0
]
}
}
}
])
I get following result:
[
{
"createdOn": 2
}
]
What I would like to achieve is a result as follows:
[
{
culture: "it-it",
results: {
"createdOn": 1
}
},
{
culture: "de-de",
results: {
"createdOn": 1
}
}
]
But I cannot seem to figure out where I can group so that I can get that result.
Can someone show me the way to do this?
The query is more complex with more metrics so this is a trimmed down version of what I have.
I tried grouping everywhere but fail to get the desired result I want.
The following query can get us the expected output:
db.customers.aggregate([
{
$lookup: {
"from": "vehicles",
"let": {
"uuid": "$uuid"
},
"pipeline": [
{
$unwind: "$users"
},
{
$match: {
$expr: {
$and: [
{
$eq: ["$users.uuid", "$$uuid"]
},
{
$eq: ["$users.isOwner", true]
},
{
$gte: ["$users.createdOn", "2019-05-15T00: 00: 00"]
},
{
$lte: ["$users.createdOn", "2019-05-16T00: 00: 00"]
}
]
}
}
},
{
$count:"totalVehicles"
}
],
as: "vehiclesInfo"
}
},
{
$unwind: {
"path": "$vehiclesInfo",
"preserveNullAndEmptyArrays": true
}
},
{
$group: {
"_id": "$culture",
"culture": {
$first: "$culture"
},
"createdOn": {
$sum: "$vehiclesInfo.totalVehicles"
}
}
},
{
$project: {
"_id": 0,
"culture": 1,
"results.createdOn": "$createdOn"
}
}
]).pretty()
Output:
{ "culture" : "de-de", "results" : { "createdOn" : 1 } }
{ "culture" : "it-it", "results" : { "createdOn" : 1 } }