from the docs of APM: https://www.elastic.co/guide/en/apm/get-started/7.12/transactions.html
Transactions are a special kind of span that have additional
attributes associated with them. They describe an event captured by an
Elastic APM agent instrumenting a service. You can think of
transactions as the highest level of work you’re measuring within a
service. As an example, a transaction might be a: ...
How is a "service" defined?
A Service is an application that is connected to the APM server via a connection and sends all of the metrics to the server.
Almost all of the backend languages connects to the APM using a client library.
I use it in Golang, the library has an agent that wraps the router and captures all metrics. In both of HTTP and GRPC.
Related
My company is interested in using a stand-alone Service Fabric cluster to manage communications with robots. In our scenario, each robot would host its own rosbridge server, and our Service Fabric application would maintain WebSocket clients to each robot. I envision a stateful service partitioned along device ids which opens connections on startup. It should monitor connection health via heartbeats, pass messages from the robots to some protocol gateway service, and listen to other services for messages to pass to the robots.
I have not seen discussion of this style of external communications in the Service Fabric documentation - I cannot tell if this is because:
There are no special considerations for managing WebSockets (or any two-way network protocol) this way from Service Fabric. I've seen no discussion of restrictions and see no reason, conceptually, why I can't do this. I originally thought replication would be problematic (duplicate messages?), but since only one replica can be primary at any time this appears to be a non-issue.
Service Fabric is not well-suited to bi-directional communication with external devices
I would appreciate some guidance on whether this architecture is feasible. If not, discussion on why it won't work will be helpful. General discussion of limitations around bi-directional communication between Service Fabric services and external devices is welcome. I would prefer if we could keep discussion to stand-alone clusters - we have no plans to use Azure services at this time.
Any particular reason you want SF to host the client and not the other way around?
Doing the way you suggest, I think you will face big challenges to make SF find these devices on your network and keep track of them, for example, Firewall, IPs, NAT, planned maintenance, failures, connection issues, unless you are planning to do it by hand.
From the brief description I saw in the docs your provided about rosbridge server, I could understand that you have to host it on a Server(like you would with a service fabric service) and your devices would connect to it, in this case, your devices would have installed the ROS to make this communication.
Regarding your concerns about the communication, service fabric services are just executable programs you would normally run on your local machine, if it works there will likely work on service fabric environment on premise, the only extra care you have to worry is the external access to the cluster(if in azure or network configurations) and service discovery.
In my point of view, you should use SF as the central point of communication, and each device would connect to SF services.
The other approach would be using Azure IoT Hub to bridge the communication between both. There is a nice Iot Hub + Service Fabric Sample that might be suitable for your needs.
Because you want to avoid Azure, you could in this case replace IoT Hub with another messaging platform or implement the rosbridge in your service to handle the calls.
I hope I understood everything right.
About the obstacles:
I think the major issue here is that bi-directional connection can be established between service replica and the robot.
This has two major problems:
Only primary replica has write access - i.e. only one replica would be able to modify state. This issue hence could be mitigated by creating a separate partition for each robot (but please remember that you can't change partition count after the service was created) or by creating a separate service instance for each robot (this would allow you to dynamically add or remove robots but would require additional logic related to service discoverability).
The replica can be shutdown (terminated), moved to another node (shutdown and start of new replica) or even demoted (the primary replica get's demoted to secondary and another secondary replica get's promoted to primary) by various reasons. So the service code and robot communication code should be able to handle this.
About WebSockets
This looks possible by implementing custom ICommunicationListener and other things using WebSockets.
I'm a newbie in Cloud Foundry. In following the reference application provided by Predix (https://www.predix.io/resources/tutorials/tutorial-details.html?tutorial_id=1473&tag=1610&journey=Connect%20devices%20using%20the%20Reference%20App&resources=1592,1473,1600), the application consisted of several modules and each module is implemented as micro service.
My question is, how do these micro services talk to each other? I understand they must be using some sort of REST calls but the problem is:
service registry: Say I have services A, B, C. How do these components 'discover' the REST URLs of other components? As the component URL is only known after the service is pushed to cloud foundry.
How does cloud foundry controls the components dependency during service startup and service shutdown? Say A cannot start until B is started. B needs to be shutdown if A is shutdown.
The ref-app 'application' consists of several 'apps' and Predix 'services'. An app is bound to the service via an entry in the manifest.yml. Thus, it gets the service endpoint and other important configuration information via this binding. When an app is bound to a service, the 'cf env ' command returns the needed info.
There might still be some Service endpoint info in a property file, but that's something that will be refactored out over time.
The individual apps of the ref-app application are put in separate microservices, since they get used as components of other applications. Hence, the microservices approach. If there were startup dependencies across apps, the CI/CD pipeline that pushes the apps to the cloud would need to manage these dependencies. The dependencies in ref-app are simply the obvious ones, read-on.
While it's true that coupling of microservices is not in the design. There are some obvious reasons this might happen. Language and function. If you have a "back-end" microservice written in Java used by a "front-end" UI microservice written in Javascript on NodeJS then these are pushed as two separate apps. Theoretically the UI won't work too well without the back-end, but there is a plan to actually make that happen with some canned JSON. Still there is some logical coupling there.
The nice things you get from microservices is that they might need to scale differently and cloud foundry makes that quite easy with the 'cf scale' command. They might be used by multiple other microservices, hence creating new scale requirements. So, thinking about what needs to scale and also the release cycle of the functionality helps in deciding what comprises a microservice.
As for ordering, for example, the Google Maps api might be required by your application so it could be said that it should be launched first and your application second. But in reality, your application should take in to account that the maps api might be down. Your goal should be that your app behaves well when a dependent microservice is not available.
The 'apps' of the 'application' know about each due to their name and the URL that the cloud gives it. There are actually many copies of the reference app running in various clouds and spaces. They are prefaced with things like Dev or QA or Integration, etc. Could we get the Dev front end talking to the QA back-end microservice, sure, it's just a URL.
In addition to the aforementioned, etcd (which I haven't tried yet), you can also create a CUPS service 'definition'. This is also a set of key/value pairs. Which you can tie to the Space (dev/qa/stage/prod) and bind them via the manifest. This way you get the props from the environment.
If micro-services do need to talk to each other, generally its via REST as you have noticed.However microservice purists may be against such dependencies. That apart, service discovery is enabled by publishing available endpoints on to a service registry - etcd in case of CloudFoundry. Once endpoint is registered, various instances of a given service can register themselves to the registry using a POST operation. Client will need to know only about the published end point and not the individual service instance's end point. This is self-registration. Client will either communicate to a load balancer such as ELB, which looks up service registry or client should be aware of the service registry.
For (2), there should not be such a hard dependency between micro-services as per micro-service definition, if one is designing such a coupled set of services that indicates some imminent issues such as orchestrating and synchronizing. If such dependencies do emerge, you will have rely on service registries, health-checks and circuit-breakers for fall-back.
There is an emerging trend of ripping global state out of traditional "static" config management tools like Chef/Puppet/Ansible, and instead storing configurations in some centralized/distributed tool, of which the main players appear to be:
ZooKeeper (Apache)
Consul (Hashicorp)
Eureka (Netflix)
Each of these tools works differently, but the principle is the same:
Store your env vars and other dynamic configurations (that is, stuff that is subject to change) in these tools as key/value pairs
Connect to these tools/services via clients at startup and pull down your config KV pairs. This typically requires the client to supply a service name ("MY_APP"), and an environment ("DEV", "PROD", etc.).
There is an excellent Consul Java client which explains all of this beautifully and provides ample code examples.
My understanding of these tools is that they are built on top of consensus algorithms such as Zab, Paxos and Gossip that allow config updates to spread almost virally, with eventual consistency, throughout your nodes. So the idea there is that if you have a myapp app that has 20 nodes, say myapp01 through myapp20, if you make a config change to one of them, that change will naturally "spread" throughout the 20 nodes over a period of seconds/minutes.
My problem is: how do these updates actually deploy to each node? In none of the client APIs (the one I linked to above, the ZooKeeper API, or the Eureka API) do I see some kind of callback functionality that can be set up and used to notify the client when the centralized service (e.g. the Consul cluster) wants to push and reload config updates.
So I ask: how is this supposed to work (dynamic config deployment and reload on clients)? I'm interested in any viable answer for any of those 3 tools, though Consul's API seems to be the most advanced IMHO.
You could use cfg4j for that. It's a Java configuration library for distributed services. It supports Consul as one of the configuration sources.
That's a nice question. I can tell how Consul HTTP client works.
I also think initially that it works in the push mechanism but while I was recently exploring Consul, I found that all Consul clients poll server for changes they want to watch. Although it is a bit different polling mechanism, Consul supports blocking queries. These are HTTP requests with a max timeout of 10 mins. This query waits until there is some change on the watched key/folder and return with the latest index. If the index is changed, the client reloads the configuration. For more info : Consul Blocking Query
If yes, I have the following questions:
After the pep proxy service is started up, should the context broker also be restarted (which I cannot)?
Should the IM and AM server be started up separately?
If I use an CEP instance to send events to the Orion Context Broker, is there any way to specify that the orion broker is secured? How to create users for the PEP proxy server? or is there any way for an cep instance to bypass the authentication and authorisation to Orion Context Broker?
Concerning 1: conceptually, PEP Proxies should be transparent to the components they are protecting, so you shouldn't have to make changes or restart your Context Broker.
Concerning 2: if by "started up separately" you mean they are different processes, independent from the PEP proxy, and should be started up separately, yes they are: they are independent of the use of a PEP proxy; it will be the PEP who contact both systems to do its job. If with "separately" you mean "in different machines", that's not really needed, you can have your own security machine with all the components, although that's not advisable.
Your third question will depend on what CEP are you going to use, as #fgalan pointed out. If the CEP supports the use of fiware authorization mechanisms, you can integrate it with the PEP-protected CB; if it does not, but your system doesn't require the users to directly interact with the CEP you can establish a secure connection between the Context Broker and the CEP independently (by using Security Groups or firewall rules) thus bypassing the PEP protection for your system's internal components (by using the secured internal ports, instead of the public ones).
Hope this solves some of your doubts.
I want to develop some local network services using apache thrift. There should be multiple services waiting for ONE master to connect to them and use them exclusively until the master releases them. The services are written in multiple languages.
The choice to use thrift was done because I need some simple remote procedure call mechansim for communication between the services that is fast and supports multiple languages. While thrift is good for RPC, I need some mechanism to locate the service TCP addresses and ports via some auto-discovery mechanism before to be able to connect the thrift server/clients with each other without hardwiring the addresses.
What are the possibilities for auto-discovering of such sort of services do I have?
Thanks!
There is nothing which you just plug into your scheme of things. You can build something similar using Apache ZooKeeper. Netflix's curator provides a good set of tools to build this, on top of ZooKeeper. See https://github.com/Netflix/curator