I have the following problem: My model must be fed by a fixed number of patients per day. Specifically, three patients must arrive every 11 minutes from 8am to 6pm! I have set the source block in the "Interarrival" mode which allows me to define the interval between patients and to have three patients every 11 min; To block the arrival of patients at 6pm I have created an event which resets the patients arrival rate to zero! But the next morning how can I set again all the specifications for the source block through an event?
I would use the inject function instead of interarrival mode.
You are on the right track by using an event. Set the event as cyclic with a cycle time of 11 minutes. The action would be:
if( getHourOfDay() >= 8 && getHourOfDay() <= 18 )
source.inject(3);
Below are some images to guide you further:
Related
I am working on a VRPTW and want to minimize the total time (travel time + waiting time) cumulated for all vehicles. So if we have 2 vehicles one that starts at time 0 and returns at time 50 and one that starts at time 25 and returns at time 100, then the objective value would be 50+75=125.
Currently I have implemented the following code:
for i in range(data['num_vehicles']):
routing.AddVariableMinimizedByFinalizer(
time_dimension.CumulVar(routing.End(i)))
However, this seems like it is only minimizing the time we arrive back at the depot.
Also it results in very high waiting times.
How do I implement it correctly in Google OR tools?
This is called the span.
See the SetSpanCostCoefficientForVehicle method for one vehicle.
You can also set it for all vehicles.
Anybody has a reference for how AnyLogic implements it's rate per day? Specifically, my agent is at different locations (based on time of day) throughout the day. If there are 10 triggers a day, do they happen randomly for each agent throughout the day, or only at the beginning of a day (when agent is at home), etc.?
Thank you, Amy! Your explanation was very helpful.
The rate follows the Poisson distribution. If you divide 1/rate, you will get an inter-arrival time that follows the exponential.
As this is random, you may not actually get 10 a day - you may get 9 one day and 11 the next. If you want to get exactly 10 in a day, you need to think about writing your own code to make that happen. That might be something like generating 10 dynamic events randomly sampled times that all trigger a transition in their action code (that would not be exponential between events).
I would like to get the mean waiting time of each unit spending in my queue of every hour. (so betweeen 7-8 am for example 4 minutes, 8-9 10 minutes and so on). Thats my current queue with my timemeasure Is there a way to do so?
]
Create a normal dataset and call it datasetHourly. Deactivate the option Use time as horizontal value. This is where we will store your hourly data.
Creat a cyclic event and set the trigger to cyclic, once every hour.
This cyclic event will get the current mean of your time measurement ( waiting time + service time in your example) and save this single value in the extra dataset.
Also we have to clear the dataset that is integrated into the timeMeasurementEnd, in order to get clean statistics again for the next hour interval.
datasetHourly.add(time(HOUR),timeMeasureEnd.dataset.getYMean());
timeMeasureEnd.dataset.reset();
You can now visualise the hourly development by adding the hourlyDataset to a normal plot.
I'm trying to simulate a pedestrian flow in the entrance of an hospital.
We are installing check-in platforms and I want to know how many platforms we should get according to the patient flow.
I'm using Anylogic personal learning edition and when I put an arrival rate of 5 per hour during the simulation only 3 appears.
I'm trying to understand how anylogic works and distribute the pedestrians according to the rate we put.
For the personnal learning edition 1h equal 1min in real.
enter image description here
if you choose rate=5, the pedSource block will generate pedestrians with an exponentially distributed interarrival time with mean = 1/rate = 1/5.
Which means that the average of arrivals on the long term will be 5, but you won't get 5 every hour since it's a stochastic variable.
If you change the seed, you will have different arrivals... click on Simulation: Main and you can change the seed or use a random seed:
Now if you really want exactly 5 per hour in a deterministic way, you need to change the arrival from rate to inject function:
Then you can create an event that runs cyclically 5 times per hour.. or 1 time every 12 minutes:
and you do pedSource.inject(1);
Background: I’m doing analysis of call detail record (CDR) data in order to segmentify customer with respect to their call duration, time of call (holiday call or non holiday call, Business call or non Business call), age group of subscriber and gender. Data is from two table name cdr (include card_number, service_key, calling, called, start_time, clear_time, duration column) and subscriber_detail (include subscriber_name, subscriber_address, DOB, gender column)
I have design OLAP as given below.
Call_date includes Date of call with year, month, and day. Call_time is time of call happen in second.
Question:- if we take call_time in second then it has 86400 column for each day (may be curse of dimensionality) and so we think to reduce its dimensional by taking 30 second time pulse ( telecom charges money on the basic of the pulse and 30 is pulse duration for our context). First Question is :- Is it the best way to replace time by pulse duration? And second is :- if one subscriber do more than 2 call on range of pulse it may cause problem i.e. first call start at 21:01:00 and end at 21:01:05 and he start second call at 21:01:15 and end at 21:01:20. How to resolve these type of problem.
If I were you I would divide the time in 10 minute slot and use link list to store multiple duration time within given time slot so total dimension of time is 144 (Which restrict roll down upto 10 minutes only).
I would keep start_call_time, end_call_time and ellapsed_call_time in seconds.
Then having ellapsed_time does not mean the cube would have a dimension of 86400 members; you could setup a 'ranged/banded' dimension : i.e., a dimension that is built using intervals instead of instants. This is something possible for example with icCube (www).