Write a function file that returns the sum of the positive components and the sum of the negative components of the input vector - matlab

Question: Write a function file that returns the sum of the positive components and the sum of the negative components of the input vector.
This problem has to be done in MATLAB but I am completely new in MATLAB? Can anyone give idea how to do this?
Attempts:
V= input(Enter a vector)
function [Ps, Ns] = mysmallfunction(V)
Ps== sum(V(V>0));
Ns= sum(V(V<0));
end
I don't know whether it will work or not.

You pretty much had it. Below is a script that'll guide you through passing the arguments and calling the function. A small issue was the double == for the assignment of Ps within the function (simply use one = unless it's for a conditional statement). To call/test the function simply use the line [Ps, Ns] = mysmallfunction(V); above your function definition (alternatively can put function definitions in separate scripts).
V = input("Enter a vector: ");
%Function call%
[Ps, Ns] = mysmallfunction(V);
%Printing the results to the command window%
fprintf("The positive numbers sum up to %f\n",Ps);
fprintf("The negative numbers sum up to %f\n",Ns);
%*******************************************************************************************************%
%FUNCTION DEFINITION (this can alternatively go in a separate script named: mysmallfunction.m)%
%*******************************************************************************************************%
function [Ps, Ns] = mysmallfunction(V)
Ps = sum(V(V>0));
Ns = sum(V(V<0));
end
Command Window (sample input)
Important to include the square brackets, [] in this case when inputting the vector.
Enter a vector: [1 2 3 -2 -5]

Related

Make vector of elements less than each element of another vector

I have a vector, v, of N positive integers whose values I do not know ahead of time. I would like to construct another vector, a, where the values in this new vector are determined by the values in v according to the following rules:
- The elements in a are all integers up to and including the value of each element in v
- 0 entries are included only once, but positive integers appear twice in a row
For example, if v is [1,0,2] then a should be: [0,1,1,0,0,1,1,2,2].
Is there a way to do this without just doing a for-loop with lots of if statements?
I've written the code in loop format but would like a vectorized function to handle it.
The classical version of your problem is to create a vector a with the concatenation of 1:n(i) where n(i) is the ith entry in a vector b, e.g.
b = [1,4,2];
gives a vector a
a = [1,1,2,3,4,1,2];
This problem is solved using cumsum on a vector ones(1,sum(b)) but resetting the sum at the points 1+cumsum(b(1:end-1)) corresponding to where the next sequence starts.
To solve your specific problem, we can do something similar. As you need two entries per step, we use a vector 0.5 * ones(1,sum(b*2+1)) together with floor. As you in addition only want the entry 0 to occur once, we will just have to start each sequence at 0.5 instead of at 0 (which would yield floor([0,0.5,...]) = [0,0,...]).
So in total we have something like
% construct the list of 0.5s
a = 0.5*ones(1,sum(b*2+1))
% Reset the sum where a new sequence should start
a(cumsum(b(1:end-1)*2+1)+1) =a(cumsum(b(1:end-1)*2+1)+1)*2 -(b(1:end-1)+1)
% Cumulate it and find the floor
a = floor(cumsum(a))
Note that all operations here are vectorised!
Benchmark:
You can do a benchmark using the following code
function SO()
b =randi([0,100],[1,1000]);
t1 = timeit(#() Nicky(b));
t2 = timeit(#() Recursive(b));
t3 = timeit(#() oneliner(b));
if all(Nicky(b) == Recursive(b)) && all(Recursive(b) == oneliner(b))
disp("All methods give the same result")
else
disp("Something wrong!")
end
disp("Vectorised time: "+t1+"s")
disp("Recursive time: "+t2+"s")
disp("One-Liner time: "+t3+"s")
end
function [a] = Nicky(b)
a = 0.5*ones(1,sum(b*2+1));
a(cumsum(b(1:end-1)*2+1)+1) =a(cumsum(b(1:end-1)*2+1)+1)*2 -(b(1:end-1)+1);
a = floor(cumsum(a));
end
function out=Recursive(arr)
out=myfun(arr);
function local_out=myfun(arr)
if isscalar(arr)
if arr
local_out=sort([0,1:arr,1:arr]); % this is faster
else
local_out=0;
end
else
local_out=[myfun(arr(1:end-1)),myfun(arr(end))];
end
end
end
function b = oneliner(a)
b = cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),a,'UniformOutput',false));
end
Which gives me
All methods give the same result
Vectorised time: 0.00083574s
Recursive time: 0.0074404s
One-Liner time: 0.0099933s
So the vectorised one is indeed the fastest, by a factor approximately 10.
This can be done with a one-liner using eval:
a = eval(['[' sprintf('sort([0 1:%i 1:%i]) ',[v(:) v(:)]') ']']);
Here is another solution that does not use eval. Not sure what is intended by "vectorized function" but the following code is compact and can be easily made into a function:
a = [];
for i = 1:numel(v)
a = [a sort([0 1:v(i) 1:v(i)])];
end
Is there a way to do this without just doing a for loop with lots of if statements?
Sure. How about recursion? Of course, there is no guarantee that Matlab has tail call optimization.
For example, in a file named filename.m
function out=filename(arr)
out=myfun(in);
function local_out=myfun(arr)
if isscalar(arr)
if arr
local_out=sort([0,1:arr,1:arr]); % this is faster
else
local_out=0;
end
else
local_out=[myfun(arr(1:end-1)),myfun(arr(end))];
end
end
end
in cmd, type
input=[1,0,2];
filename(input);
You can take off the parent function. I added it just hoping Matlab can spot the recursion within filename.m and optimize for it.
would like a vectorized function to handle it.
Sure. Although I don't see the point of vectorizing in such a unique puzzle that is not generalizable to other applications. I also don't foresee a performance boost.
For example, assuming input is 1-by-N. In cmd, type
input=[1,0,2];
cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),input,'UniformOutput',false)
Benchmark
In R2018a
>> clear all
>> in=randi([0,100],[1,100]); N=10000;
>> T=zeros(N,1);tic; for i=1:N; filename(in) ;T(i)=toc;end; mean(T),
ans =
1.5647
>> T=zeros(N,1);tic; for i=1:N; cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),in,'UniformOutput',false)); T(i)=toc;end; mean(T),
ans =
3.8699
Ofc, I tested with a few more different inputs. The 'vectorized' method is always about twice as long.
Conclusion: Recursion is faster.

Understanding Non-homogeneous Poisson Process Matlab code

I have found the following Matlab code to simulate a Non-homogeneous Poisson Process
function x = nonhomopp(intens,T)
% example of generating a
% nonhomogeneousl poisson process on [0,T] with intensity function intens
x = 0:.1:T;
m = eval([intens 'x']);
m2 = max(m); % generate homogeneouos poisson process
u = rand(1,ceil(1.5*T*m2));
y = cumsum(-(1/m2)*log(u)); %points of homogeneous pp
y = y(y<T); n=length(y); % select those points less than T
m = eval([intens 'y']); % evaluates intensity function
y = y(rand(1,n)<m/m2); % filter out some points
hist(y,10)
% then run
% t = 7 + nonhomopp('100-10*',5)
I am new to Matlab and having trouble understanding how this works. I have read the Mathworks pages on all of these functions and am confused in four places:
1) Why is the function defined as x and then the intervals also called x? Like is this an abuse of notation?
2) How does the square brackets affect eval,
eval([intens 'x'])
and why is x in single quotations?
3) Why do they use cumsum instead of sum?
4) The given intensity function is \lambda (t) = 100 - 10*(t-7) with 7 \leq t \leq 12 How does t = 7 + nonhomopp('100-10*',5) represent this?
Sorry if this is so much, thank you!
To answer 2). That's a unnecessary complicated piece of code. To understand it, evaluate only the squared brackets and it's content. It results in the string 100-10*x which is then evaluated. Here is a version without eval, using an anonymous function instead. This is how it should have been implemented.
function x = nonhomopp(intens,T)
% example of generating a
% nonhomogeneousl poisson process on [0,T] with intensity function intens
x = 0:.1:T;
m = intens(x);
m2 = max(m); % generate homogeneouos poisson process
u = rand(1,ceil(1.5*T*m2));
y = cumsum(-(1/m2)*log(u)); %points of homogeneous pp
y = y(y<T); n=length(y); % select those points less than T
m = intens(y); % evaluates intensity function
y = y(rand(1,n)<m/m2); % filter out some points
hist(y,10)
Which can be called like this
t = 7 + honhomopp(#(x)(100-10*x),5)
the function is not defined as x: x is just the output variable. In Matlab functions are declared as function [output variable(s)] = <function name>(input variables). If the function has only one output, the square brackets can be omitted (like in your case). The brackets around the input arguments are, as instead, mandatory, no matter how many input arguments there are. It is also good practice to end the body of a function with end, just like you do with loops and if/else.
eval works with a string as input and the square brackets apprently are concatenating the string 'intens' with the string 'x'. x is in quotes because, again, eval works with input in string format even if it's referring to variables.
cumsum and sum act differently. sum returns a scalar that is the sum of all the elements of the array whereas cumsum returns another array which contains the cumulative sum. If our array is [1:5], sum([1:5]) will return 15 because it's 1+2+3+4+5. As instead cumsum([1:5]) will return [1 3 6 10 15], where every element of the output array is the sum of the previous elements (itself included) from the input array.
what the command t = 7 + nonhomopp('100-10*',5) returns is simply the value of time t and not the value of lambda, indeed by looking at t the minimum value is 7 and the maximum value is 12. The Poisson distribution itself is returned via the histogram.

Matlab: Command Line Inputs for an Eigenfunction Solver (Numerical Method)

I've got some code to numerically solve for eigenvectors:
function[efun,V,D] = solveeig(n,xmax,i)
for j=1:i
%The first and second derivative matrices
dd = 1/(xmax/n)^2*(-2*diag(ones(n,1))+diag(ones(n-1,1),1)+...
diag(ones(n-1,1),-1));
d = 1/(xmax/n)*((-1*diag(ones(n,1)))+diag(ones(n-1,1),1));
%solve for the eigenvectors
[V,D] = eig(-dd-2*d);
%plot the eigenvectors (normalized) with the normalized calculated
%eigenfunctions
x = linspace(0,xmax,n);
subplot(i,1,j);
plot(x,V(:,j)/sum(V(:,j)),'*');
hold on
efun = exp(-x).*sin(j*pi*x/xmax);
plot(x,efun/(sum(efun)),'r');
shg
end
end
i is supposed to be the first i eigenvectors, n is the dimension of the
matrices (the number of pieces we discretize x into), xmax is the upper limit of the range on which the fxn is defined.
I'm trying to run this from the command line (as: "solveeig # # #", where the number signs correspond to i, n, and xmax) but no matter what I seem to put in for i, n, and xmax, I get "For colon operator with char operands, first and last operands must be char."
What should I be writing on the command line to get this to run?
Using the command syntax interprets the arguments as strings
For fuller details see the documentation but in short:
Calling
myFun myVar1 6 myVar2
is equivalent to calling
myFun('myVar1','6','myVar2')
and not the desired1
myFun(myVar1,6,myVar2)
In the first cases the function will receive 3 strings (text)
In the second the function will receive the data stored in myVar1 myVar2 and the number 6
The specific error you received is caused by line 2 for j=1:i here i is a string. This error is a merely consequence of the way the function has been called, the line itself is fine2.
How to get it to work
Use function syntax: in the command window something like:
solveeig(n,xmax,i)
If command syntax is absolutely required ( and I can't think why it would be) the much less favourable alternative would be to parse the strings inputted in command syntax. To convert the numbers into numeric formats and use evalin/assignin on the passed variable names to pull variables in from the caller
1As mentioned in comments by patrik
2meaning it won't error, however i and j as variable names is another matter

need explanation about a matlab code snippet about moran process

I am new to Matlab. I was reading this code snippet, but in some parts (marked with asterisks) I don't understand what it means, so if anybody could help would be very much appreciated
function [A1nmb] = moran(initsize, popsize)
% MORAN generates a trajectory of a Moran type process
% which gives the number of genes of allelic type A1 in a population
% of haploid individuals that can exist in either type A1 or type A2.
% The population size is popsize and the initial number of type A1
% individuals os initsize.
% Inputs: initsize - initial number of A1 genes
% popsize - the total population size (preserved)
if (nargin==0)
initsize=10;
popsize=30;
end
A1nmb=zeros(1,popsize);
A1nmb(1)=initsize;
**lambda = inline('(x-1).*(1-(x-1)./N)', 'x', 'N');
mu = inline('(x-1).*(1-(x-1)./N)', 'x', 'N');**
x=initsize;
i=1;
while (x>1 & x<popsize+1)
if (lambda(x,popsize)/(lambda(x,popsize)+mu(x,popsize))>rand)
x=x+1;
A1nmb(i)=x;
else
x=x-1;
A1nmb(i)=x;
end;
i=i+1;
end;
nmbsteps=length(A1nmb);
***rate = lambda(A1nmb(1:nmbsteps-1),popsize) ...
+mu(A1nmb(1:nmbsteps-1),popsize);***
**jumptimes=cumsum(-log(rand(1,nmbsteps-1))./rate);**
jumptimes=[0 jumptimes];
stairs(jumptimes,A1nmb);
axis([0 jumptimes(nmbsteps) 0 popsize+1]);
The first line you marked
lambda = inline('(x-1).*(1-(x-1)./N)', 'x', 'N');
creates something called an inline function. It is equivalent to defining a mathematical function. Example:
y = inline('x^2')
would allow you to do
>> y(2)
4
This immediately explains the second line you marked.
rate = lambda(A1nmb(1:nmbsteps-1),popsize) ...
+mu(A1nmb(1:nmbsteps-1),popsize);
will compute the value of the function lambda(x,N) at x = A1nmb(1:nmbsteps-1) and N = popsize.
I will say immediately here that you should take a look at anonymous functions, a different format used to accomplish the same as inline. Only, anonymous functions are generally better supported, and usually a lot faster than inline functions.
Then, for the final line,
jumptimes = cumsum(-log(rand(1,nmbsteps-1))./rate);
is a nested command. rand will create a matrix containing pseudorandom numbers, log is the natural logarithm ("ln"), and cumsum creates a new matrix, where all the elements in the new matrix are the cumulative sum of the elements in the input matrix.
You will find the commands doc and help very useful. Try typing
doc cumsum
or
help inline
on the Matlab command prompt. Try that again with the commands forming the previous statement.
As a general word of advice: spend an insane lot of time reading through the documentation. Really, for each new command you encounter, read about it and play with it in a sandbox until you feel you understand it. Matlab only becomes powerful if you know all its commands, and there are a lot to get to know.
It defines an inline function object. For example this
lambda = inline('(x-1).*(1-(x-1)./N)', 'x', 'N')
defines lambda as a function with 2 variables. When you call lambda(A,n) Matlab simply expands the function you define in the first string. Thus lambda(A,n) using the variables you provide in the function call. lambda(A,n) would will evaluate to:
(A-1).*(1-(A-1)./n)
it just expands the function using the parameters you supply. Take a look at this link for more specific details http://www.mathworks.co.uk/help/techdoc/ref/inline.html
The cumsum function just returns the cumulative sum of a matrix along a particular dimension. Say we call cumsum on a vector X, then the value at element i in the result is equal to the sum of elements in X from index 1 to i. For example X = [1 2 1 3] we would get
AA = cumsum(X);
we would have
AA = [1 3 5 8]
See this link for more details and examples http://www.mathworks.co.uk/help/techdoc/ref/cumsum.html

nlfilter taking same values twice

I used nlfilter for a test function of mine as follows:
function funct
clear all;
clc;
I = rand(11,11);
ld = input('Enter the lag = ') % prompt for lag distance
A = nlfilter(I, [7 7], #dirvar);
% Subfunction
function [h] = dirvar(I)
c = (size(I)+1)/2
EW = I(c(1),c(2):end)
h = length(EW) - ld
end
end
The function works fine but it is expected that nlfilter progresses element by element, but in first two iterations the values of EW will be same 0.2089 0.4162 0.9398 0.1058. But then onwards for all iterations the next element is selected, for 3rd it is 0.4162 0.9398 0.1058 0.1920, for 4th it is 0.9398 0.1058 0.1920 0.5201 and so on. Why is it so?
This is nothing to worry about. It happens because nlfilter needs to evaluate your function to know what kind of output to create. So it uses feval once before starting to move across the image. The output from this feval call is what you see the first time.
From the nlfilter code:
% Find out what output type to make.
rows = 0:(nhood(1)-1);
cols = 0:(nhood(2)-1);
b = mkconstarray(class(feval(fun,aa(1+rows,1+cols),params{:})), 0, size(a));
% Apply fun to each neighborhood of a
f = waitbar(0,'Applying neighborhood operation...');
for i=1:ma,
for j=1:na,
x = aa(i+rows,j+cols);
b(i,j) = feval(fun,x,params{:});
end
waitbar(i/ma)
end
The 4th line call to eval is what you observe as the first output from EW, but it is not used to anything other than making the b matrix the right class. All the proper iterations happen in the for loop below. This means that the "duplicate" values you observe does not affect your final output matrix, and you need not worry.
I hope you know what the length function does? It does not give you the Euclidean length of a vector, but rather the largest dimension of a vector (so in your case, that should be 4). If you want the Euclidean length (or 2-norm), use the function norm instead. If your code does the right thing, you might want to use something like:
sz = size(I,2);
h = sz - (sz+1)/2 - ld;
In your example, this means that depending on the lag you provide, the output should be constant. Also note that you might want to put semicolons after each line in your subfunction and that using clear all as the first line of a function is useless since a function will always be executed in its own workspace (that will however clear persistent or global variables, but you don't use them in your code).