Postgresql best index for datetime ranges - postgresql

I have a Postgre table “tasks” with the fields “start”:timestamptz, “finish”:timestamptz, “type”:int (and a lot of others). It contains about 200m records. Start, finish and type fields have a separate b-tree indexes.
I’d like to build a report “Tasks for a period” and need to get all tasks which lay (fully or partially) inside the reporting period. Report could be built for all task types or for the specific one.
So I wrote the SQL:
SELECT * FROM tasks
WHERE start<={report_to}
AND finish>={report_from}
AND ({report_tasktype} IS NULL OR type={report_tasktype})
and it runs for ages even on short reporting periods.
Please advice if there a way to improve performance by altering the query or by creating new indexes on the table? For some reasons I can’t change the structure of the “tasks” table

You would want a GiST index on the range. Since you already have it stored as two end points rather than as a range, you could do a functional index to convert them on the fly.
ON task USING GIST (tstzrange(start,finish))
And then compare the ranges for overlap with &&
It may also improve things to add "type" as a second column to the index, which would require the btree_gist extension.

Related

get postgres to use an index when querying timestamps in a function

I have a system with a large number of tables that contain historical data. Each table has a ts_from and ts_to column which are of type timestamptz. These represent the time period in which the data for a particular row was valid.
These columns are indexed.
If I want to query all rows that were valid at a particular timestamp, it is trivial to write the ts_from <= #at_timestamp AND ts_to >= #at_timestamp WHERE clause to utilitise the index.
However, I wanted to create a function called Temporal.at which would take the #at_timestamp column and the ts_from / ts_to columns and do this by hiding the complexity of the comparison from the query that uses it. You might think this is trivial, but I would also like to extend the concept to create a function called Temporal.between which would take a #from_timestamp and #to_timestamp and select all rows that were valid between those two periods. That function would not be trivial, as one would have to check where rows partially overlap the period rather than always being fully enclosed by it.
The issue is this: I have written these functions but they do not cause the index to be used. The query performance is woefully slow on the history tables, some of which have hundreds of millions of rows.
The questions therefore are:
a) Is there a way to write these functions so that we can be sure the indexes will be used?
b) Am I going about this completely the wrong way and is there a better way to proceed?
This is complicated if you model ts_from and ts_to as two different timestamp columns. Instead, you should use a range type: tstzrange. Then everything will become simple:
for containment in an interval, use #at_timestamp <# from_to
for interval overlap, use tstzinterval(#from_timestamp, #to_timestamp) && from_to
Both queries can be supported by a GiST index on the range column.

Sphinx / Manticore - base one plain index off another?

I have a plain text index that sucks data from MySQL and inserts it into Manticore in a format I need (e.g. converting datetime strings to timestamp, CONCATing some fields etc.
I then want to create a second plain text index based off this data to group it further. This will save me having to either re-run the normalisation that's done to the first index on INSERT or make it easier for me to query in the future.
For example, my first index is a list of all phone calls that have been made / received (telephone number, duration, agent). The second index should group by Year-Month-Date in such a way that I can see how many calls each agent made on that day. This means I end up with idx_phone_calls and idx_phone_calls_by_date.
Currently, I generate the first index from MySQL, then get Manticore to query itself (by setting the MySQL host to localhost. It works, but it feels as though I should be able to query Manticore directly from within the index. However, I'm struggling to find if that's possible.
Is there a better way to do it?
Well Sphinx/Manticore, has its own GROUP BY function. So maybe can just run the final query against the original index anyway, avoid the need for the second index.
Sphinx's Aggregation (in some way) is more powerful than MySQL, and can do some 'super aggregation' functions (like with WITHIN GROUP ORDER BY)
But otherwise there is no direct way to create an off another (eg there is no CREATE TABLE idx_phone_calls_by_date SELECT ... FROM idx_phone_calls ... )
Your 'solution' of directing indexer to query the data from searchd is good. In general this should be pretty efficent, particully on localhost, there is little overhead. Maintains the logical seperation of searchd being for queries, indexer being for well building indexes.

PostgreSQL - Compare ts_vector fields

I have two tables in which I have data coming from two different sources. One of the field of each table contains the title of a movie, but for some reason out of my control, the titles are not always exactly the same.
So I use the ts_vector to get rid of all the minor differences (stop words, plurals and so on).
See an example here: http://sqlfiddle.com/#!17/5ccbc/3
My problem is how to compare the two ts_vector without taking into account the numberic values, but just the text content. If I compare directly the two fields, I only get the exact match between values, including position of each word. The only solution I have found is using the strip() function, that remove positions and weights from tsvector, leaving only the text content.
I was wondering if there is a fastest way to compare ts_vectors.
You could create in index on the stripped vector:
create index on tbl1 (strip(ts_title));
create index on tbl2 (strip(ts_title));
But given that your query has to fetch every row of each table, it is unlikely this would serve much of a point. Doing a merge join between the precomputed stripped vectors could be faster, but probably not once you include the overhead of building and maintaining the indexes. If the real WHERE clause is more restrictive (selecting only a few rows from one or the other of the tables) then please share the real query.

Postgres hstore for time series

I am new to postgres and am experimenting with the hstore extension.Looking for some guidance. I need to support basic reporting on timeseries data for various products that we sell. I have a large amount data in the format "Timestamp, Value" for each product. This data is available in a csv fle for each product.
I am thinking of using hstore to store this data in the key value format. Assuming that all the timeseries data for a single product can be stored in a single hstore object. I need to be able to query this data by specific times, say what was the value of a product at a given time? Also need to run simple queries like retrieving the times where the product costed more than $100.
I'm planning to have a table with a product id column and an hstore column. But I am not very clear on how to make this work:
The hstore column needs to be loaded from thousands of timestamp,value records that exist in a csv. The hstore should be appended whenever we get a new csv.
The table needs to store the productId and corresponding Timeseries data.
Can you please advise if using hstore would be helpful ? If yes then how can I load data from csv as explained above. Also, if there could be any impact on the performance on inserts/updates in the hstore, as data grows please share your experiences.
I do think you should start with a simple, normalised schema first, especially since you are new to PostgreSQL. Something like:
CREATE TABLE product_data
(
product TEXT, -- I'm making an assumption about the types of your columns
time TIMESTAMP,
value DOUBLE PRECISION,
PRIMARY KEY (product, time);
);
I would definitely keep hstore and similar options in mind, if and when your data becomes large enough that efficiency is more important and simplicity. But note that all options have an efficiency tradeoff.
Do you know how much data you're going to support? Number of products, number of distinct timestamps for each product?
What other queries do you want to run? A query for the times where a single product cost more than $100 would benefit from an index on (product, value), if the product has many distinct timestamps.
Other options
hstore is most useful if you want to store a table set of arbitrary key-value pairs in a row. You could use it here, with a row for each product, and each distinct timestamp for that product being a key in the product's table. The downsides are that keys and values in hstore are text, whereas your keys are timestamps, and your values are numbers of some kind. So there will be a certain reduction in type checking, and a certain increase in type casting cost required. Another possible downside is that some queries on the hstore might not use indexes very efficiently. The above table can use simple btree indexes for range queries (say you want to pull out the values between two dates for a product). But hstore indexes are much more limited; you can use a gist or gin index on an hstore column to find all the rows that feature a certain key.
Another option (which I've played with and use experimentally for some of my databases) is arrays. Basically, each product will have an array of values, and each timestamp maps to an index in the array. This is easy if the timestamps are perfectly regular. For example, if all your products had a value every hour for every day, you could use a table like this:
CREATE TABLE product_data
(
product TEXT,
day DATE,
values DOUBLE PRECISION[], -- An array from 0 to 23.
PRIMARY KEY (product, day);
);
You can construct views and indexes to make querying this table moderate easy. (I wrote a blog post on this technique at http://ejrh.wordpress.com/2011/03/20/vector-denormalisation-in-postgresql/.)
But my advice is still: start with a simple table, then explore ways to improve efficiency when you know you're going to need them.

I have a massive table that I need to optimize. I think I need to use indexes, but I was hoping for some more information about them

So I have a large table that I query (select only) quite frequently. The table is around 12,000 rows long. Since the advent of iOS, the time that it is taking to run these select queries has gone up 4-5x.
I was told that I need to add an index to my table. The query that I am using looks like this:
SELECT * FROM book_content WHERE book_id = ? AND chapter = ? ORDER BY verse ASC
How can I create an index for this table? Is it a command I just run once? What exactly is the index going to do? I didn't learn about these in school so they still seem like some sort of magic to me at this point, so I was hoping to get a little instruction.
Thanks!
You want an index on book_id and chapter. Without an index, a server would do a table scan and essentially load the entire table into memory to do its search. Do a quick search on the CREATE INDEX command for the RDBMS that you are using. You create the index once and every time you do an INSERT or DELETE or UPDATE, the server will update the index automatically. An index can be UNIQUE and it can be on multiple fields (in your case, book_id and chapter). If you make it UNIQUE, the database will not allow you to insert a second row with the same key (in this case, book_id and chapter). On most servers, having one index on two fields is different from having two individual indexes on single fields each.
A Mysql example would be:
CREATE INDEX id_chapter_idx ON book_content (book_id,chapter);
If you want only one record for each book_id, chapter combination, use this command:
CREATE UNIQUE INDEX id_chapter_idx ON book_content (book_id,chapter);
A PRIMARY INDEX is a special index that is UNIQUE and NOT NULL. Each table can only have one primary index. In fact, each table should have one primary index to ensure table integrity, especially during joins.
You don't have to think of indexes as "magic".
An index on an SQL table is much like the index in a printed book - it lets you find what you're looking for without reading the entire book cover-to-cover.
For example, say you have a cookbook, and you're looking for recipes that involve chicken. The index in the back of the book might say something like:
chicken: 30,34,72,84
letting you know that you will find chicken recipes on those 4 pages. It's much faster to find this information in the index than by reading through the whole book, because the index is shorter, and (more importantly) it's in alphabetical order, so you can quickly find the right place in the index.
So, in general you want to create indexes on columns that you will regularly need to query (book_id and chapter, in your example).
When you declare a column as primary key automatically generates an index on that column. In your case for using more often select an index is ideal, because they improve time of selection queries and degrade the time of insertion. So you can create the indexes you think you need without worrying about the performance
Indexes are a very sensitive subject. If you consider using them, you need to be very careful how many you make. The primary key, or id, of each table should have a clustered index. All the rest, it depends on how you plan to use them. I'm very fuzzy in the subject of indexes, and have actually never worked with them, but from a seminar I just watched actually yesterday, you don't want too many indexes - because they can actually slow things down when you don't need to use them.
Let's say you put an index on 5 out of 8 fields on a table. Each index is designated for a particular query somewhere in your software. Well, when 1 query is run, it uses that 1 index, and doesn't need the other 4. So that's unneeded weight on this 1 query. If you need an index, be sure that this is an index which could be useful in many places, not just 1 place.