Convert a Hexadecimal to Binary values - flutter

How to convert a Hexadecimal to Binary values.
Here is my code:
String authSign() {
if (CheckDate % 2 == 0) {
return Signature = H + B + Sk;
} else {
return Signature = B + H + Sk;
}
}
;
var key = utf8.encode(authSign());
var stringSha = sha256.convert(key);
var stringHex = hex.decode(stringSha.toString());
var finalHex = hex.encode(stringHex.toList());
and here is the result:
flutter: dad85aac19b632a71b4759078bf90cbe4fba354582454f0445bc3bb8e3e4c587
and the result I want is:
64616438356161633139623633326137316234373539303738626639306362653466626133353435383234353466303434356263336262386533653463353837

Just use BigInt.parse or BigInt.tryParse and set its radix parameter to 16:
String hex = "dad85aac19b632a71b4759078bf90cbe4fba354582454f0445bc3bb8e3e4c587";
BigInt bin = BigInt.parse(hex,radix: 16);

Related

Mongo Shell convert string to nuuid and compare

I would like to do the following:
db
.getCollection('COLLECTION')
.find({ $where : function() { return NUUID(this.Col1) != this.Col2 }})
Where Col1 contains NUUID strings and Col2 contains NUUIDs.
I would like rows where the NUUID value of Col1 (which is a string) is not equal to Col2.
I receive the error: ReferenceError: NUUID is not defined
Using https://github.com/mongodb/mongo-csharp-driver/blob/master/uuidhelpers.js , the solution is:
db
.getCollection('TestColl')
.find({$where: function(){
function CSUUID(uuid) {
var hex = uuid.replace(/[{}-]/g, ""); // remove extra characters
var a = hex.substr(6, 2) + hex.substr(4, 2) + hex.substr(2, 2) + hex.substr(0, 2);
var b = hex.substr(10, 2) + hex.substr(8, 2);
var c = hex.substr(14, 2) + hex.substr(12, 2);
var d = hex.substr(16, 16);
hex = a + b + c + d;
var base64 = HexToBase64(hex);
return new BinData(3, base64);
}
function HexToBase64(hex) {
var base64Digits = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var base64 = "";
var group;
for (var i = 0; i < 30; i += 6) {
group = parseInt(hex.substr(i, 6), 16);
base64 += base64Digits[(group >> 18) & 0x3f];
base64 += base64Digits[(group >> 12) & 0x3f];
base64 += base64Digits[(group >> 6) & 0x3f];
base64 += base64Digits[group & 0x3f];
}
group = parseInt(hex.substr(30, 2), 16);
base64 += base64Digits[(group >> 2) & 0x3f];
base64 += base64Digits[(group << 4) & 0x3f];
base64 += "==";
return base64;
}
return CSUUID(this['Col1']).toString() != this['Col2'].toString()
}
})

Missing return in Swift

Here is my code.
import UIKit
var str = "Hello, playground"
//There are two sorted arrays nums1 and nums2 of size m and n respectively.
//Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
//Example 1:
//nums1 = [1, 3]
//nums2 = [2]
//
//The median is 2.0
//Example 2:
//nums1 = [1, 2]
//nums2 = [3, 4]
//
//The median is (2 + 3)/2 = 2.5
var num1 = [1,2,2,5]
var num2 = [2,3,9,9]
class Solution {
func findMedianSortedArrays(_ nums1: [Int], _ nums2: [Int]) -> Double {
var A = nums1
var B = nums2
var m = nums1.count
var n = nums2.count
var max_of_left : Int = 0
var min_of_right = 0
if n < m {
var temp : [Int]
var tempt : Int
temp = nums1
tempt = m
A = nums2
B = temp
m = n
n = tempt
}
if n == 0{
fatalError("Arrays must be fulfilled")
}
var imin = 0
var imax = m
let half_len = Int((m+n+1)/2)
while imin <= imax {
let i = Int((imin + imax) / 2)
let j = half_len - i
if i > 0 && A[i-1] > B[j]{
imax = i - 1
}
else if i < m && A[i] < B[j-1]{
imin = i + 1
}
else
{
if i == 0{
max_of_left = B[j-1]
}
else if j == 0{
max_of_left = A[i-1]
}
else
{
max_of_left = max(A[i-1], B[j-1])
}
if m+n % 2 == 1{
return Double(max_of_left)
}
if i==m{
min_of_right = B[j]
}
else if j == n{
min_of_right = A[i]
}
else{
min_of_right = min(A[i], B[j])
//editor indicates error here
}
return Double((Double(max_of_left+min_of_right) / 2.0))
}
}
}
}
var a = Solution()
print(a.findMedianSortedArrays(num1, num2))
error: day4_Median_of_Two_Sorted_Arrays.playground:86:13: error: missing return in a function expected to return 'Double'
Since I put my return out of if statement, I think it will be okay because it will stop while looping when it meets return.
But editor says it's not.
I want to know why. Please explain me why.
Every code path through your findMedianSortedArrays() must return a Double.
So you need a return of a Double placed outside of your while loop. Even if you had every code path within the while loop have a return double, if imin > imax you wouldn't even enter the while loop, and so would need a return of a double outside it.
I fixed it by putting another return out of while loop.
//: Playground - noun: a place where people can play
import UIKit
var str = "Hello, playground"
//There are two sorted arrays nums1 and nums2 of size m and n respectively.
//Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
//Example 1:
//nums1 = [1, 3]
//nums2 = [2]
//
//The median is 2.0
//Example 2:
//nums1 = [1, 2]
//nums2 = [3, 4]
//
//The median is (2 + 3)/2 = 2.5
var num1 = [1,2,2,5]
var num2 = [2,3,9,9]
class Solution {
func findMedianSortedArrays(_ nums1: [Int], _ nums2: [Int]) -> Double {
var A = nums1
var B = nums2
var m = nums1.count
var n = nums2.count
var max_of_left : Int = 0
var min_of_right = 0
if n < m {
var temp : [Int]
var tempt : Int
temp = nums1
tempt = m
A = nums2
B = temp
m = n
n = tempt
}
if n == 0{
fatalError("Arrays must be fulfilled")
}
var imin = 0
var imax = m
let half_len = Int((m+n+1)/2)
while imin <= imax {
let i = Int((imin + imax) / 2)
let j = half_len - i
if i > 0 && A[i-1] > B[j]{
imax = i - 1
}
else if i < m && A[i] < B[j-1]{
imin = i + 1
}
else
{
if i == 0{
max_of_left = B[j-1]
}
else if j == 0{
max_of_left = A[i-1]
}
else
{
max_of_left = max(A[i-1], B[j-1])
}
if m+n % 2 == 1{
return Double(max_of_left)
}
if i==m{
min_of_right = B[j]
}
else if j == n{
min_of_right = A[i]
}
else{
min_of_right = min(A[i], B[j])
}
return Double((Double(max_of_left+min_of_right) / 2.0))
}
}
return Double((Double(max_of_left+min_of_right) / 2.0))
}
}
var a = Solution()
print(a.findMedianSortedArrays(num1, num2))

Int() doesn't convert from String to Optional Integer (Swift)

I'm new at programming and started with Swift. The first issue I came along with is the following:
I have 4 variables
var a = "345"
var b = "30.6"
var c = "74hf2"
var d = "5"
I need to count the sum of Integers (if not integer, it will turn to nil)
if Int(a) != nil {
var aNum = Int(ar)!
}
if Int (b) != nil {
var bNum = Int (b)!
}
and so on..
As far as I understand, the Int() should convert each element into an Optional Integer.
Then I should use forced unwrapping by convertin the Int? to Int and only then I can use it for my purposes. But instead, when I count the sum of my variables, the compiler sums them as Strings.
var sum = aNum + bNum + cNum + dNum
Output:
34530.674hf25
Why my variables, which are declared as strings and then converted into optional integers with Int(), didn't work?
Your code has typos that make it hard to tell what you are actually trying to do:
Assuming your 2nd variable should be b, as below:
var a = "345"
var b = "30.6"
var c = "74hf2"
var d = "5"
///Then you can use code like this:
var sum = 0
if let aVal = Int(a) { sum += aVal }
if let bVal = Int(b) { sum += bVal }
if let cVal = Int(c) { sum += cVal }
if let dVal = Int(d) { sum += dVal }
print(sum)
That prints 350 since only 345 and 5 are valid Int values.

Google Translate TTS API blocked

Google implemented a captcha to block people from accessing the TTS translate API https://translate.google.com/translate_tts?ie=UTF-8&q=test&tl=zh-TW. I was using it in my mobile application. Now, it is not returning anything. How do I get around the captcha?
Add the qualifier '&client=tw-ob' to the end of your query.
https://translate.google.com/translate_tts?ie=UTF-8&q=test&tl=zh-TW&client=tw-ob
This answer no longer works consistently. Your ip address will be blocked by google temporarily if you abuse this too much.
there are 3 main issues:
you must include "client" in your query string (client=t seems to work).
(in case you are trying to retrieve it using AJAX) the Referer of the HTTP request must be https://translate.google.com/
"tk" field changes for every query, and it must be populated with a matching hash:
tk = hash(q, TKK), where q is the text to be TTSed, and TKK is a var in the global scope when you load translate.google.com: (type 'window.TKK' in the console). see the hash function at the bottom of this reply (calcHash).
to summarize:
function generateGoogleTTSLink(q, tl, tkk) {
var tk = calcHash(q, tkk);
return `https://translate.google.com/translate_tts?ie=UTF-8&total=1&idx=0&client=t&ttsspeed=1&tl=${tl}&tk=${tk}&q=${q}&textlen=${q.length}`;
}
generateGoogleTTSLink('ciao', 'it', '410353.1336369826');
// see definition of "calcHash" in the bottom of this comment.
=> to get your hands on a TKK, you can open Google Translate website, then type "TKK" in developer tools' console (e.g.: "410353.1336369826").
NOTE that TKK value changes every hour, and so, old TKKs might get blocked at some point, and refreshing it may be necessary (although so far it seems like old keys can work for a LONG time).
if you DO wish to periodically refresh TKK, it can be automated pretty easily, but not if you're running your code from the browser.
you can find a full NodeJS implementation here:
https://github.com/guyrotem/google-translate-server.
it exposes a minimal TTS API (query, language), and is deployed to a free Heroku server, so you can test it online if you like.
function shiftLeftOrRightThenSumOrXor(num, opArray) {
return opArray.reduce((acc, opString) => {
var op1 = opString[1]; // '+' | '-' ~ SUM | XOR
var op2 = opString[0]; // '+' | '^' ~ SLL | SRL
var xd = opString[2]; // [0-9a-f]
var shiftAmount = hexCharAsNumber(xd);
var mask = (op1 == '+') ? acc >>> shiftAmount : acc << shiftAmount;
return (op2 == '+') ? (acc + mask & 0xffffffff) : (acc ^ mask);
}, num);
}
function hexCharAsNumber(xd) {
return (xd >= 'a') ? xd.charCodeAt(0) - 87 : Number(xd);
}
function transformQuery(query) {
for (var e = [], f = 0, g = 0; g < query.length; g++) {
var l = query.charCodeAt(g);
if (l < 128) {
e[f++] = l; // 0{l[6-0]}
} else if (l < 2048) {
e[f++] = l >> 6 | 0xC0; // 110{l[10-6]}
e[f++] = l & 0x3F | 0x80; // 10{l[5-0]}
} else if (0xD800 == (l & 0xFC00) && g + 1 < query.length && 0xDC00 == (query.charCodeAt(g + 1) & 0xFC00)) {
// that's pretty rare... (avoid ovf?)
l = (1 << 16) + ((l & 0x03FF) << 10) + (query.charCodeAt(++g) & 0x03FF);
e[f++] = l >> 18 | 0xF0; // 111100{l[9-8*]}
e[f++] = l >> 12 & 0x3F | 0x80; // 10{l[7*-2]}
e[f++] = l & 0x3F | 0x80; // 10{(l+1)[5-0]}
} else {
e[f++] = l >> 12 | 0xE0; // 1110{l[15-12]}
e[f++] = l >> 6 & 0x3F | 0x80; // 10{l[11-6]}
e[f++] = l & 0x3F | 0x80; // 10{l[5-0]}
}
}
return e;
}
function normalizeHash(encondindRound2) {
if (encondindRound2 < 0) {
encondindRound2 = (encondindRound2 & 0x7fffffff) + 0x80000000;
}
return encondindRound2 % 1E6;
}
function calcHash(query, windowTkk) {
// STEP 1: spread the the query char codes on a byte-array, 1-3 bytes per char
var bytesArray = transformQuery(query);
// STEP 2: starting with TKK index, add the array from last step one-by-one, and do 2 rounds of shift+add/xor
var d = windowTkk.split('.');
var tkkIndex = Number(d[0]) || 0;
var tkkKey = Number(d[1]) || 0;
var encondingRound1 = bytesArray.reduce((acc, current) => {
acc += current;
return shiftLeftOrRightThenSumOrXor(acc, ['+-a', '^+6'])
}, tkkIndex);
// STEP 3: apply 3 rounds of shift+add/xor and XOR with they TKK key
var encondingRound2 = shiftLeftOrRightThenSumOrXor(encondingRound1, ['+-3', '^+b', '+-f']) ^ tkkKey;
// STEP 4: Normalize to 2s complement & format
var normalizedResult = normalizeHash(encondingRound2);
return normalizedResult.toString() + "." + (normalizedResult ^ tkkIndex)
}
// usage example:
var tk = calcHash('hola', '409837.2120040981');
console.log('tk=' + tk);
// OUTPUT: 'tk=70528.480109'
You can also try this format :
pass q= urlencode format of your language
(In JavaScript you can use the encodeURI() function & PHP has the rawurlencode() function)
pass tl = language short name (suppose bangla = bn)
Now try this :
https://translate.google.com.vn/translate_tts?ie=UTF-8&q=%E0%A6%A2%E0%A6%BE%E0%A6%95%E0%A6%BE+&tl=bn&client=tw-ob
First, to avoid captcha, you have to set a proper user-agent like: "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:46.0) Gecko/20100101 Firefox/46.0"
Then to not being blocked you must provide a proper token ("tk" get parameter) for each single request.
On the web you can find many different kind of scripts that try to calculate the token after a lot of reverse engineering...but every time the big G change the algorithm you're stuck again, so it's much easier to retrieve your token just observing in deep similar requests to translate page (with your text in the url).
You can read the token time by time grepping "tk=" from the output of this simple code with phantomjs:
"use strict";
var page = require('webpage').create();
var system = require('system');
var args = system.args;
if (args.length != 2) { console.log("usage: "+args[0]+" text"); phantom.exit(1); }
page.onConsoleMessage = function(msg) { console.log(msg); };
page.onResourceRequested = function(request) { console.log('Request ' + JSON.stringify(request, undefined, 4)); };
page.open("https://translate.google.it/?hl=it&tab=wT#fr/it/"+args[1], function(status) {
if (status === "success") { phantom.exit(0); }
else { phantom.exit(1); }
});
so in the end you can get your speech with something like:
wget -U "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:46.0) Gecko/20100101 Firefox/46.0"
"http://translate.google.com/translate_tts?ie=UTF-8&tl=it&tk=52269.458629&q=ciao&client=t" -O ciao.mp3
(token are probably time based so this link may not work tomorrow)
I rewrote Guy Rotem's answer in Java, so if you prefer Java over Javascript, feel free to use:
public class Hasher {
public long shiftLeftOrRightThenSumOrXor(long num, String[] opArray) {
long result = num;
int current = 0;
while (current < opArray.length) {
char op1 = opArray[current].charAt(1); // '+' | '-' ~ SUM | XOR
char op2 = opArray[current].charAt(0); // '+' | '^' ~ SLL | SRL
char xd = opArray[current].charAt(2); // [0-9a-f]
assertError(op1 == '+'
|| op1 == '-', "Invalid OP: " + op1);
assertError(op2 == '+'
|| op2 == '^', "Invalid OP: " + op2);
assertError(('0' <= xd && xd <= '9')
|| ('a' <= xd && xd <='f'), "Not an 0x? value: " + xd);
int shiftAmount = hexCharAsNumber(xd);
int mask = (op1 == '+') ? ((int) result) >>> shiftAmount : ((int) result) << shiftAmount;
long subresult = (op2 == '+') ? (((int) result) + ((int) mask) & 0xffffffff)
: (((int) result) ^ mask);
result = subresult;
current++;
}
return result;
}
public void assertError(boolean cond, String e) {
if (!cond) {
System.err.println();
}
}
public int hexCharAsNumber(char xd) {
return (xd >= 'a') ? xd - 87 : Character.getNumericValue(xd);
}
public int[] transformQuery(String query) {
int[] e = new int[1000];
int resultSize = 1000;
for (int f = 0, g = 0; g < query.length(); g++) {
int l = query.charAt(g);
if (l < 128) {
e[f++] = l; // 0{l[6-0]}
} else if (l < 2048) {
e[f++] = l >> 6 | 0xC0; // 110{l[10-6]}
e[f++] = l & 0x3F | 0x80; // 10{l[5-0]}
} else if (0xD800 == (l & 0xFC00) &&
g + 1 < query.length() && 0xDC00 == (query.charAt(g + 1) & 0xFC00)) {
// that's pretty rare... (avoid ovf?)
l = (1 << 16) + ((l & 0x03FF) << 10) + (query.charAt(++g) & 0x03FF);
e[f++] = l >> 18 | 0xF0; // 111100{l[9-8*]}
e[f++] = l >> 12 & 0x3F | 0x80; // 10{l[7*-2]}
e[f++] = l & 0x3F | 0x80; // 10{(l+1)[5-0]}
} else {
e[f++] = l >> 12 | 0xE0; // 1110{l[15-12]}
e[f++] = l >> 6 & 0x3F | 0x80; // 10{l[11-6]}
e[f++] = l & 0x3F | 0x80; // 10{l[5-0]}
}
resultSize = f;
}
return Arrays.copyOf(e, resultSize);
}
public long normalizeHash(long encondindRound2) {
if (encondindRound2 < 0) {
encondindRound2 = (encondindRound2 & 0x7fffffff) + 0x80000000L;
}
return (encondindRound2) % 1_000_000;
}
/*
/ EXAMPLE:
/
/ INPUT: query: 'hola', windowTkk: '409837.2120040981'
/ OUTPUT: '70528.480109'
/
*/
public String calcHash(String query, String windowTkk) {
// STEP 1: spread the the query char codes on a byte-array, 1-3 bytes per char
int[] bytesArray = transformQuery(query);
// STEP 2: starting with TKK index,
// add the array from last step one-by-one, and do 2 rounds of shift+add/xor
String[] d = windowTkk.split("\\.");
int tkkIndex = 0;
try {
tkkIndex = Integer.valueOf(d[0]);
}
catch (Exception e) {
e.printStackTrace();
}
long tkkKey = 0;
try {
tkkKey = Long.valueOf(d[1]);
}
catch (Exception e) {
e.printStackTrace();
}
int current = 0;
long result = tkkIndex;
while (current < bytesArray.length) {
result += bytesArray[current];
long subresult = shiftLeftOrRightThenSumOrXor(result,
new String[] {"+-a", "^+6"});
result = subresult;
current++;
}
long encondingRound1 = result;
//System.out.println("encodingRound1: " + encondingRound1);
// STEP 3: apply 3 rounds of shift+add/xor and XOR with they TKK key
long encondingRound2 = ((int) shiftLeftOrRightThenSumOrXor(encondingRound1,
new String[] {"+-3", "^+b", "+-f"})) ^ ((int) tkkKey);
//System.out.println("encodingRound2: " + encondingRound2);
// STEP 4: Normalize to 2s complement & format
long normalizedResult = normalizeHash(encondingRound2);
//System.out.println("normalizedResult: " + normalizedResult);
return String.valueOf(normalizedResult) + "."
+ (((int) normalizedResult) ^ (tkkIndex));
}
}

Small differences in SHA1 hashes

A project I am working on uses Apache Shiro as a security framework. Passwords are SHA1 hashed (no salt, no iterations). Login is SSL secured. However, the remaining part of the application is not SSL secured. In this context (no SSL) there should be a form where a user can change the password.
Since it wouldn't be a good idea to transmit it plainly it should be hashed on the client and then transmitted to the server. As the client is GWT (2.3) based, I am trying this library http://code.google.com/p/gwt-crypto, which uses code from bouncycastle.
However, in many cases (not all) the hashes generated by both frameworks differ in 1-4(?) characters.
For instance "happa3" is hashed to
"fe7f3cffd8a5f0512a5f1120f1369f48cd6f47c2"
by both implementations, whereas just "happa" is hashed to
"fb3c3a741b4e07a87d9cb68f3db020d6fbfed00a"
by the Shiro implementation and to
"fb3c3a741b4e07a87d9cb63f3db020d6fbfed00a"
by the gwt-crypto implementation (23rd character differs).
I wonder whether there is a "correct"/standard SHA1 hashing and whether there is a bug in one of the libraries or maybe my usage of them is flawed.
One of my first thoughts was related to different encodings or strange conversions due to different transport mechanisms (RPC vs. Post). To my knowledge though (and what puzzles me most), SHA1 hashes should differ completely with a high probability if there is just a difference of a single bit. So different encodings shouldn't be the issue here.
I am using this code on the client (GWT) for hashing:
String hashed = toHex(createSHA1Hash("password"));
...
private String createSHA1Hash(String passwordString){
SHA1Digest sha1 = new SHA1Digest();
byte[] bytes;
byte[] result = new byte[sha1.getDigestSize()];
try {
bytes = passwordString.getBytes();
sha1.update(bytes, 0, bytes.length);
int val = sha1.doFinal(result, 0);
} catch (UnsupportedEncodingException e) {}
return new String(result);
}
public String toHex(String arg) {
return new BigInteger(1, arg.getBytes()).toString(16);
}
And this on the server (Shiro):
String hashed = new Sha1Hash("password").toHex()
which afaics does something very similar behind the scenes (had a quick view on the source code).
Did I miss something obvious here?
EDIT: Seems like the GWT code does not run natively for some reason (i.e. just in development mode) and silently fails (it does compile, though). Have to find out why...
Edit(2): "int val = sha1.doFinal(result, 0);" is the line that makes trouble, i.e. if present, the whole code does not run natively (JS) but only in dev-mode (with wrong results)
You could test this version:
public class SHA1 {
public static native String calcSHA1(String s) /*-{
//
// A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
// in FIPS 180-1
// Version 2.2 Copyright Paul Johnston 2000 - 2009.
// Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
// Distributed under the BSD License
// See http://pajhome.org.uk/crypt/md5 for details.
//
//
// Configurable variables. You may need to tweak these to be compatible with
// the server-side, but the defaults work in most cases.
//
var hexcase = 0; // hex output format. 0 - lowercase; 1 - uppercase
var b64pad = ""; // base-64 pad character. "=" for strict RFC compliance
//
// These are the functions you'll usually want to call
// They take string arguments and return either hex or base-64 encoded strings
//
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
function hex_hmac_sha1(k, d)
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_sha1(k, d)
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_sha1(k, d, e)
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
//
// Perform a simple self-test to see if the VM is working
//
function sha1_vm_test()
{
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
}
//
// Calculate the SHA1 of a raw string
//
function rstr_sha1(s)
{
return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
}
//
// Calculate the HMAC-SHA1 of a key and some data (raw strings)
//
function rstr_hmac_sha1(key, data)
{
var bkey = rstr2binb(key);
if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
var ipad = Array(16), opad = Array(16);
for(var i = 0; i < 16; i++)
{
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5C5C5C5C;
}
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
}
//
// Convert a raw string to a hex string
//
function rstr2hex(input)
{
try { hexcase } catch(e) { hexcase=0; }
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
var output = "";
var x;
for(var i = 0; i < input.length; i++)
{
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F)
+ hex_tab.charAt( x & 0x0F);
}
return output;
}
//
// Convert a raw string to a base-64 string
//
function rstr2b64(input)
{
try { b64pad } catch(e) { b64pad=''; }
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var output = "";
var len = input.length;
for(var i = 0; i < len; i += 3)
{
var triplet = (input.charCodeAt(i) << 16)
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
for(var j = 0; j < 4; j++)
{
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
}
}
return output;
}
//
// Convert a raw string to an arbitrary string encoding
//
function rstr2any(input, encoding)
{
var divisor = encoding.length;
var remainders = Array();
var i, q, x, quotient;
// Convert to an array of 16-bit big-endian values, forming the dividend
var dividend = Array(Math.ceil(input.length / 2));
for(i = 0; i < dividend.length; i++)
{
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
//
// Repeatedly perform a long division. The binary array forms the dividend,
// the length of the encoding is the divisor. Once computed, the quotient
// forms the dividend for the next step. We stop when the dividend is zero.
// All remainders are stored for later use.
//
while(dividend.length > 0)
{
quotient = Array();
x = 0;
for(i = 0; i < dividend.length; i++)
{
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if(quotient.length > 0 || q > 0)
quotient[quotient.length] = q;
}
remainders[remainders.length] = x;
dividend = quotient;
}
// Convert the remainders to the output string
var output = "";
for(i = remainders.length - 1; i >= 0; i--)
output += encoding.charAt(remainders[i]);
// Append leading zero equivalents
var full_length = Math.ceil(input.length * 8 /
(Math.log(encoding.length) / Math.log(2)))
for(i = output.length; i < full_length; i++)
output = encoding[0] + output;
return output;
}
//
// Encode a string as utf-8.
// For efficiency, this assumes the input is valid utf-16.
//
function str2rstr_utf8(input)
{
var output = "";
var i = -1;
var x, y;
while(++i < input.length)
{
// Decode utf-16 surrogate pairs
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
{
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
i++;
}
// Encode output as utf-8
if(x <= 0x7F)
output += String.fromCharCode(x);
else if(x <= 0x7FF)
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
0x80 | ( x & 0x3F));
else if(x <= 0xFFFF)
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
else if(x <= 0x1FFFFF)
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3F),
0x80 | ((x >>> 6 ) & 0x3F),
0x80 | ( x & 0x3F));
}
return output;
}
//
// Encode a string as utf-16
//
function str2rstr_utf16le(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
(input.charCodeAt(i) >>> 8) & 0xFF);
return output;
}
function str2rstr_utf16be(input)
{
var output = "";
for(var i = 0; i < input.length; i++)
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
input.charCodeAt(i) & 0xFF);
return output;
}
//
// Convert a raw string to an array of big-endian words
// Characters >255 have their high-byte silently ignored.
//
function rstr2binb(input)
{
var output = Array(input.length >> 2);
for(var i = 0; i < output.length; i++)
output[i] = 0;
for(var i = 0; i < input.length * 8; i += 8)
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
return output;
}
//
// Convert an array of big-endian words to a string
//
function binb2rstr(input)
{
var output = "";
for(var i = 0; i < input.length * 32; i += 8)
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
return output;
}
//
// Calculate the SHA-1 of an array of big-endian words, and a bit length
//
function binb_sha1(x, len)
{
// append padding
x[len >> 5] |= 0x80 << (24 - len % 32);
x[((len + 64 >> 9) << 4) + 15] = len;
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
for(var i = 0; i < x.length; i += 16)
{
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for(var j = 0; j < 80; j++)
{
if(j < 16) w[j] = x[i + j];
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
safe_add(safe_add(e, w[j]), sha1_kt(j)));
e = d;
d = c;
c = bit_rol(b, 30);
b = a;
a = t;
}
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
e = safe_add(e, olde);
}
return Array(a, b, c, d, e);
}
//
// Perform the appropriate triplet combination function for the current
// iteration
//
function sha1_ft(t, b, c, d)
{
if(t < 20) return (b & c) | ((~b) & d);
if(t < 40) return b ^ c ^ d;
if(t < 60) return (b & c) | (b & d) | (c & d);
return b ^ c ^ d;
}
//
// Determine the appropriate additive constant for the current iteration
//
function sha1_kt(t)
{
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
(t < 60) ? -1894007588 : -899497514;
}
//
// Add integers, wrapping at 2^32. This uses 16-bit operations internally
// to work around bugs in some JS interpreters.
//
function safe_add(x, y)
{
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
//
// Bitwise rotate a 32-bit number to the left.
//
function bit_rol(num, cnt)
{
return (num << cnt) | (num >>> (32 - cnt));
}
return rstr2hex(rstr_sha1(str2rstr_utf8(s)));
}-*/;
}
I'm using it in my client side sha generation and it worked well.