Decode config to case class with pureconfig with default values - scala

Assuming I have the following config:
{
“default-value”:5,
“some-seq”: [
{“some-other-value”:100},
{“foo”:”bar”},
{“some-other-value”:1500}
]
}
I want it to be decoded to case classes:
case class Config(defaultValue: Int, someSeq: Seq[SomeInteger])
case class SomeInteger(someOtherValue: Int)
So that it creates Config(5, Seq(SomeInteger(100), SomeInteger(5), SomeInteger(1500)))
(Second one is 5 since there is no some-other-value key in the second object of the list)
Is there a way to do so?

You can add a type parameter to SomeInteger and Config to specify what the type of someOtherValue should be. Then you create a ConfigReader[Config[Option[Int]]] and use the map method to apply the default:
case class Config[A](defaultValue: Int, someSeq: Seq[SomeInteger[A]])
object Config {
private def applyDefault(config: Config[Option[Int]]): Config[Int] =
config.copy(
someSeq = config.someSeq.map(i =>
i.copy(
someOtherValue = i.someOtherValue.getOrElse(config.defaultValue))))
implicit val reader: ConfigReader[Config[Int]] =
deriveReader[Config[Option[Int]]]
.map(applyDefault)
}
case class SomeInteger[A](someOtherValue: A)
object SomeInteger {
implicit val reader: ConfigReader[SomeInteger[Option[Int]]] =
deriveReader[SomeInteger[Option[Int]]]
}
Unfortunately this means you need to write Config[Int] everywhere instead of just Config. But this can easily be fixed by renaming Config to e. g. GenConfig and add a type alias: type Config = GenConfig[Int].

Related

Left to right arguments type inference

I have a case where I wish to apply modifications to an object based on the presence of (a few, say, 5 to 10) optionals. So basically, if I were to do it imperatively, what I'm aiming for is :
var myObject = ...
if (option.isDefined) {
myObject = myObject.modify(option.get)
}
if (option2.isDefined) {
myObject = myObject.someOtherModification(option2.get)
}
(Please note : maybe my object is mutable, maybe not, that is not the point here.)
I thought it'd look nicer if I tried to implement a fluent way of writing this, such as (pseudo code...) :
myObject.optionally(option, _.modify(_))
.optionally(option2, _.someOtherModification(_))
So I started with a sample code, which intelliJ does not highlight as an error, but that actually does not build.
class MyObject(content: String) {
/** Apply a transformation if the optional is present */
def optionally[A](optional: Option[A], operation: (A, MyObject) => MyObject): MyObject =
optional.map(operation(_, this)).getOrElse(this)
/** Some possible transformation */
def resized(length : Int): MyObject = new MyObject(content.substring(0, length))
}
object Test {
val my = new MyObject("test")
val option = Option(2)
my.optionally(option, (size, value) => value.resized(size))
}
Now, in my case, the MyObject type is of some external API, so I created an implicit conversion to help, so what it really does look like :
// Out of my control
class MyObject(content: String) {
def resized(length : Int): MyObject = new MyObject(content.substring(0, length))
}
// What I did : create a rich type over MyObject
class MyRichObject(myObject: MyObject) {
def optionally[A](optional: Option[A], operation: (A, MyObject) => MyObject): MyObject = optional.map(operation(_, myObject)).getOrElse(myObject)
}
// And an implicit conversion
object MyRichObject {
implicit def apply(myObject: MyObject): MyRichObject = new MyRichObject(myObject)
}
And then, I use it this way :
object Test {
val my = new MyObject("test")
val option = Option(2)
import MyRichObject._
my.optionally(option, (size, value) => value.resized(size))
}
And this time, it fails in IntelliJ and while compiling because the type of the Option is unknown :
Error:(8, 26) missing parameter type
my.optionally(option, (size, value) => value.resized(size))
To make it work, I can :
Actively specify a type of the size argument : my.optionally(option, (size: Int, value) => value.resized(size))
Rewrite the optionally to a curried-version
None of them is really bad, but if I may ask :
Is there a reason that a curried version works, but a multi argument version seems to fail to infer the parametrized type,
Could it be written in a way that works without specifying the actual types
and as a bonus (although this might be opinion based), how would you write it (some sort of foldLeft on a sequence of optionals come to my mind...) ?
One option for your consideration:
// Out of my control
class MyObject(content: String) {
def resized(length : Int): MyObject = new MyObject(content.substring(0, length))
}
object MyObjectImplicits {
implicit class OptionalUpdate[A](val optional: Option[A]) extends AnyVal {
def update(operation: (A, MyObject) => MyObject): MyObject => MyObject =
(obj: MyObject) => optional.map(a => operation(a, obj)).getOrElse(obj)
}
}
object Test {
val my = new MyObject("test")
val option = Option(2)
import MyObjectImplicits._
Seq(
option.update((size, value) => value.resized(size)),
// more options...
).foldLeft(my)(_)
}
Might as well just use a curried-version of your optionally, like you said.
A nicer way to think about the need to add the type there is write it this way:
object Test {
val my = new MyObject("test")
val option = Some(2)
my.optionally[Int](option, (size, value) => value.resized(size))
}
Another way, if you only will manage one type since the object creation, is to move the generic to the class creation, but be careful, with this option you only can have one type per instance:
class MyObject[A](content: String) {
def optionally(optional: Option[A], operation: (A, MyObject[A]) => MyObject[A]): MyObject[A] =
optional.map(operation(_, this)).getOrElse(this)
def resized(length : Int): MyObject[A] = new MyObject[A](content.substring(0, length))
}
object Test {
val my = new MyObject[Int]("test")
val option = Some(2)
my.optionally(option, (size, value) => value.resized(size))
}
As you can see, now all the places where the generics was is taken by the Int type, because that is what you wanted in the first place, here is a pretty answer telling why:
(just the part that I think applies here:)
4)When the inferred return type would be more general than you intended, e.g., Any.
Source: In Scala, why does a type annotation must follow for the function parameters ? Why does the compiler not infer the function parameter types?

How to define a parametric type alias

I try to define a parametric type alias :
case class A
case class B
case class C
// We need an Int to load instances of A and B, and a String to load C
object Service {
def loadA(i: Int) : A = ???
def loadB(i: Int) : B = ???
def loadC(s: String) : C = ???
}
trait Location[T] { def get : T}
class IntLocation(val i: Int)
class StringLocation(val s: String)
trait EntityLocation[E] extends Location[_]
// Aim : make the loader typesafe
// Problem : I need something like that : type EntityLocation[Composite] = IntLocation
object Family {
trait EntityLoader[EntityT] extends (EntityLocation[EntityT] => EntityT)
val ALoader = new EntityLoader[A] {def load[A](l: EntityLocation[A]) = Service.loadA(l.get)
}
I am not sure what you are trying to achieve here. Could you please explain how you want to use these types in your code?
Assuming just want to use the types IdLocation and FileLocation in your code, maybe you want to try
trait Location[T] { def get : T }
type IdLocation = Location[Id]
type FileLocation = Location[java.io.File]
Seems rather convoluted, so I'm not sure I follow exactly what your purpose here is. You seem to go into many layers of factories that create factories, that call factory methods, etc.
Seems to me that at the end of the day you need you want to have a val ALoader value that you can use to get instances of A from Location[Int] objects, so I'll go with that assumption:
// Not sure what you want this one, but let's assume that you need a wrapper class per your example.
trait Location[P] { def get: P }
class IntLocation(val i: Int) extends Location[Int]
{
override def get: Int = i
}
// P for parameter, O for output class.
def loader[O, P](creator: P => O)(param: Location[P]) = { creator(param.get) }
object Service
{
// A function somewhere, capable of taking your parameter and creating something else (in your example, an Int to an 'A')
// here Int to String to make something concrete.
// This could be any function, anywhere
def loadA(someParam: Int) = someParam.toString
}
def main(args: Array[String])
{
val myStringLoader: Location[Int] => String = loader(Service.loadA)
// Alternatively, you could have written `val myStringLoader = loader(Service.loadA)(_)`. Either the type or the underscore are needed to tell the compiler that you expect a function, not a value.
// Some definition for you wrapper class
val location3 = new Location[Int]{
override def get: Int = 3
}
// ... or just a plain old instance of it.
val otherLocation = new IntLocation(5)
// This would 'load' the kind of thing you want using the method you specified.
val myString = myStringLoader(location3)
val myOtherString = myStringLoader(otherLocation)
// This prints "3 - 5"
print(myString + " - " + myOtherString)
}
This might seem like a long answer, but in truth the line def loader[O, P](creator: P => O)(param: Location[P]) = { creator(param.get) } is the one that does it all, the rest is to make it as similar to your sample as possible and to provide a working main you can use to start from.
Of course, this would be even simpler if you don't really need the Location wrapper for your integer.

Function chaining in scala

I can't seem to figure out how to chain together these functions, any help or advice would be appreciated.
// Generic approach to adding flags to a command string
trait UpdateCommandString {
def update[T](option: Option[T], flagName: String)(implicit command: String): String = {
if (option.isEmpty)
command
else if (option.get.isInstanceOf[Boolean]) {
if (option.get.asInstanceOf[Boolean])
s"$command $flagName"
command
} else
s"$command $flagName ${option.get.asInstanceOf[String]}"
}
}
// One example of flags (the program I'm using has literally 50+ flags
// so there will be a number of case classes that group them into related
// sets)
case class Flags(cache: Option[String] = None,
errorlog: Option[String] = None,
accesslog: Option[String] = None,
verbose: Option[Boolean] = Some(false),
auth: Option[Boolean] = Some(false)) extends UpdateCommandString {
def applyToCommand(implicit command: String): String = {
// These seem to apply separately, but I want to chain
// them together!
update(cache, "-cache")
update(errorlog, "-error")
update(accesslog, "-access")
update(auth, "-do-auth")
}
}
// An example of what I'm trying to do
// Given a base command string and a bunch of case classes to apply
// to that string, I'd like to be able to call applyToCommand and
// get back the modified command string
var command = "run_system"
val f = Flags(Some("asdfasdf"), None, None, Some(true), Some(false))
command = f.applyToCommand(command)
I would recommend a complete redesign of your current approach.
Every member of your Flags class should be it's own case class, extending a common Flag class.
So you can define functions to combine different flags to one configuration. This configuration can than, in a final step, be used to build your result string.
abstract class Flag(name: String, parameter : Option[String])
case class Cache(parameter : Option[String]) extends Flag("-cache", parameter)
case class ErrorLog(parameter : Option[String]) extends Flag("-errorlog", parameter)
//...
type Config = List[Flag]
def applyToCommand(commandName : String, config : Config) = {
def buildString(f:Flag) =
s" $f.name${f.parameter.map(" " ++ _).getOrElse("")}"
val flagsString = config.map(buildString).mkString("")
s"$commandName" ++ flagString
}
//Now you can it simply use it as I described above
val config = List(Cache(Some("asdf")), ErrorLog(None))
applyToCommand("run_system", config)
This makes your code more flexible and easier to refactor.
At last here are some advises how you could modify this design to better fit your needs:
If you need to group your flags, you can put them in objects or separate files. Or if you want to change their behavior based on the group you can enhance the class hierarchy and add an intermediate layer.
You can move the parameter from Flag down to the case classes, so every Flag can define if it needs parameters, if yes how many and if those are optional or not.
You could also implement buildString at the case classes so every flag can decide how to format it self.
If you want do add new Flags you simply add a new class and that's it, no need to add anything to an unrelated class.
As explained #bmaderbacher, I think you should separate the different flags in the different case class.
But to answer your question, you should modify applyToCommand:
def applyToCommand(implicit command: String): String = {
var s = update(cache, "-cache")(command)
s = update(errorlog, "-error")(s)
s = update(accesslog, "-access")(s)
s = update(auth, "-do-auth")(s)
s
}
At this point it should be clear that you didn't make the right choice for your Flag class.
I'll do something like that:
trait Flag {
def toString: String
}
case class Command(value: String) {
def add(flag: Flag) = Command(value + ' ' + flag.toString)
def +(flag: Flag) = add(flag)
}
case class Cache(size: Int) extends Flag {
def toString = s"--cache $size"
}
case object Auth extends Flag {
def toString = "--auth"
}
Now you can do something like:
val command = Command("run") + Cache(500) + Auth

Scala Pickling: Writing a custom pickler / unpickler for nested structures

I'm trying to write a custom SPickler / Unpickler pair to work around some the current limitations of scala-pickling.
The data type I'm trying to pickle is a case class, where some of the fields already have their own SPickler and Unpickler instances.
I'd like to use these instances in my custom pickler, but I don't know how.
Here's an example of what I mean:
// Here's a class for which I want a custom SPickler / Unpickler.
// One of its fields can already be pickled, so I'd like to reuse that logic.
case class MyClass[A: SPickler: Unpickler: FastTypeTag](myString: String, a: A)
// Here's my custom pickler.
class MyClassPickler[A: SPickler: Unpickler: FastTypeTag](
implicit val format: PickleFormat) extends SPickler[MyClass[A]] with Unpickler[MyClass[A]] {
override def pickle(
picklee: MyClass[A],
builder: PBuilder) {
builder.beginEntry(picklee)
// Here we save `myString` in some custom way.
builder.putField(
"mySpecialPickler",
b => b.hintTag(FastTypeTag.ScalaString).beginEntry(
picklee.myString).endEntry())
// Now we need to save `a`, which has an implicit SPickler.
// But how do we use it?
builder.endEntry()
}
override def unpickle(
tag: => FastTypeTag[_],
reader: PReader): MyClass[A] = {
reader.beginEntry()
// First we read the string.
val myString = reader.readField("mySpecialPickler").unpickle[String]
// Now we need to read `a`, which has an implicit Unpickler.
// But how do we use it?
val a: A = ???
reader.endEntry()
MyClass(myString, a)
}
}
I would really appreciate a working example.
Thanks!
Here is a working example:
case class MyClass[A](myString: String, a: A)
Note that the type parameter of MyClass does not need context bounds. Only the custom pickler class needs the corresponding implicits:
class MyClassPickler[A](implicit val format: PickleFormat, aTypeTag: FastTypeTag[A],
aPickler: SPickler[A], aUnpickler: Unpickler[A])
extends SPickler[MyClass[A]] with Unpickler[MyClass[A]] {
private val stringUnpickler = implicitly[Unpickler[String]]
override def pickle(picklee: MyClass[A], builder: PBuilder) = {
builder.beginEntry(picklee)
builder.putField("myString",
b => b.hintTag(FastTypeTag.ScalaString).beginEntry(picklee.myString).endEntry()
)
builder.putField("a",
b => {
b.hintTag(aTypeTag)
aPickler.pickle(picklee.a, b)
}
)
builder.endEntry()
}
override def unpickle(tag: => FastTypeTag[_], reader: PReader): MyClass[A] = {
reader.hintTag(FastTypeTag.ScalaString)
val tag = reader.beginEntry()
val myStringUnpickled = stringUnpickler.unpickle(tag, reader).asInstanceOf[String]
reader.endEntry()
reader.hintTag(aTypeTag)
val aTag = reader.beginEntry()
val aUnpickled = aUnpickler.unpickle(aTag, reader).asInstanceOf[A]
reader.endEntry()
MyClass(myStringUnpickled, aUnpickled)
}
}
In addition to the custom pickler class, we also need an implicit def which returns a pickler instance specialized for concrete type arguments:
implicit def myClassPickler[A: SPickler: Unpickler: FastTypeTag](implicit pf: PickleFormat) =
new MyClassPickler

How to represent optional fields in spray-json?

I have an optional field on my requests:
case class SearchRequest(url: String, nextAt: Option[Date])
My protocol is:
object SearchRequestJsonProtocol extends DefaultJsonProtocol {
implicit val searchRequestFormat = jsonFormat(SearchRequest, "url", "nextAt")
}
How do I mark the nextAt field optional, such that the following JSON objects will be correctly read and accepted:
{"url":"..."}
{"url":"...", "nextAt":null}
{"url":"...", "nextAt":"2012-05-30T15:23Z"}
I actually don't really care about the null case, but if you have details, it would be nice. I'm using spray-json, and was under the impression that using an Option would skip the field if it was absent on the original JSON object.
Works for me (spray-json 1.1.1 scala 2.9.1 build)
import cc.spray.json._
import cc.spray.json.DefaultJsonProtocol._
// string instead of date for simplicity
case class SearchRequest(url: String, nextAt: Option[String])
// btw, you could use jsonFormat2 method here
implicit val searchRequestFormat = jsonFormat(SearchRequest, "url", "nextAt")
assert {
List(
"""{"url":"..."}""",
"""{"url":"...", "nextAt":null}""",
"""{"url":"...", "nextAt":"2012-05-30T15:23Z"}""")
.map(_.asJson.convertTo[SearchRequest]) == List(
SearchRequest("...", None),
SearchRequest("...", None),
SearchRequest("...", Some("2012-05-30T15:23Z")))
}
You might have to create an explicit format (warning: psuedocodish):
object SearchRequestJsonProtocol extends DefaultJsonProtocol {
implicit object SearchRequestJsonFormat extends JsonFormat[SearchRequest] {
def read(value: JsValue) = value match {
case JsObject(List(
JsField("url", JsString(url)),
JsField("nextAt", JsString(nextAt)))) =>
SearchRequest(url, Some(new Instant(nextAt)))
case JsObject(List(JsField("url", JsString(url)))) =>
SearchRequest(url, None)
case _ =>
throw new DeserializationException("SearchRequest expected")
}
def write(obj: SearchRequest) = obj.nextAt match {
case Some(nextAt) =>
JsObject(JsField("url", JsString(obj.url)),
JsField("nextAt", JsString(nextAt.toString)))
case None => JsObject(JsField("url", JsString(obj.url)))
}
}
}
Use NullOptions trait to disable skipping nulls:
https://github.com/spray/spray-json#nulloptions
Example:
https://github.com/spray/spray-json/blob/master/src/test/scala/spray/json/ProductFormatsSpec.scala
Don't know if this will help you but you can give that field a default value in the case class definition, so if the field is not in the json, it will assign the default value to it.
Easy.
import cc.spray.json._
trait MyJsonProtocol extends DefaultJsonProtocol {
implicit val searchFormat = new JsonWriter[SearchRequest] {
def write(r: SearchRequest): JsValue = {
JsObject(
"url" -> JsString(r.url),
"next_at" -> r.nextAt.toJson,
)
}
}
}
class JsonTest extends FunSuite with MyJsonProtocol {
test("JSON") {
val search = new SearchRequest("www.site.ru", None)
val marshalled = search.toJson
println(marshalled)
}
}
For anyone who is chancing upon this post and wants an update to François Beausoleil's answer for newer versions of Spray (circa 2015+?), JsField is deprecated as a public member of JsValue; you should simply supply a list of tuples instead of JsFields. Their answer is spot-on, though.