I would like to get a count of all notifications that aren't read by an User ("A", "B", "C", etc) for each subRoom. Taking into account that it could be millions of notifications documents and hundreds of subrooms elements in Rooms Collections, i need to limit it. For that reason I've limited the $lookup for first 100 elements and then check if that notifications have been read or not by an User. I did it using documents (roomId) in $lookup but I cant do it using subdocuments (subRoom.id).
Notifications Collection is indexed using a Compound of (roomId: 1, timestamp: -1)
Notifications Collection: (id corresponds to notification id and roomId is the link to Rooms collection)
[{
"_id": "XXX",
"id": "1",
"read": ["A", "B", "C"],
"roomId": "c1d87a4c-231d-4cc8-8438-35cf21ed7fc5",
"content": "XXX",
"timestamp": { "$date": "2021-12-31T22:50:53.000Z" }
},{
"_id": "XXX",
"id": "2",
"read": ["C"],
"roomId": "c1d87a4c-231d-4cc8-8438-35cf21ed7fc5",
"content": "XXX",
"timestamp": { "$date": "2021-12-31T22:50:53.000Z" }
},
...
]
Rooms Collection:
[{
"_id": "XXX"
"subRoom": [{
"id": "c1d87a4c-231d-4cc8-8438-35cf21ed7fc5",
"image": "XXX",
"name": "XXX"
}, {
"id": "c2d5081e-0cf1-4e69-937d-be357da1d104",
"image": "XXX",
"name": "XXX"
}, {
"id": "530c2c02-26e8-441c-af39-c5232dfe1f73",
"image": "XXX",
"name": "XXX"
}],
"id": "453a6458-6545-4842-8946-05f49efea216",
"name": "XXX",
},
...
]
Code working using roomId instead subRoom.id:
{ $lookup: {
from: "notifications",
let: { "id": "$id" },
pipeline: [
{ $match: {
$expr:
{ $eq: [ "$roomId", "$$id" ] }
}},
{ $limit: 100},
{ $project: {_id: 0, read: 1}}
],
as: "messages"
}},
{ $project: {_id: 0, id: 1, notRead: {
$size: {
$filter: {
input: "$notifications",
cond: {
$not: {
$in: [
"A",
"$$this.read"
]
}
}
}
}
},
}
Code NOT WORKING using subRoom.id:
{ $lookup: {
from: "notifications",
let: { "id": "$subRoom.id" },
pipeline: [
{ $match: {
$expr:
{ $eq: [ "$roomId", "$$id" ] }
}},
{ $limit: 100},
{ $project: {_id: 0, read: 1}}
],
as: "messages"
}},
{
$addFields: {
items: {
$map: {
input: { $zip: { inputs: ["$subRoom", "$messages"] } },
in: { $mergeObjects: "$$this" },
},
},
},
},
.
. projection
.
Expected Result:
[{
"_id": "XXX"
"subRoom": [{
"id": "c1d87a4c-231d-4cc8-8438-35cf21ed7fc5",
"notRead": 50 //e.g
}, {
"id": "c2d5081e-0cf1-4e69-937d-be357da1d104",
"notRead": 35 //e.g
}, {
"id": "530c2c02-26e8-441c-af39-c5232dfe1f73",
"image": "XXX",
"notRead": 5 //e.g
}],
"id": "453a6458-6545-4842-8946-05f49efea216",
"name": "XXX",
},
...
]
Finally and very importantly, I want an scalable solution that can be done with big data.
Thank you very much in advance.
$unwind deconstruct subRoom array with preserve null and empty array property
$lookup with notification collection using pipeline, let to pass id to pipeline, check condition for roomId and user should not read notification
$group by null and count total unread notifications
$addFields to get count to notifications using $sum
$group by _id and reconstruct the subRoom array with required fields in result
db.rooms.aggregate([
{
$unwind: {
path: "$subRoom",
preserveNullAndEmptyArrays: true
}
},
{
$lookup: {
from: "nitifications",
let: { id: "$subRoom.id" },
pipeline: [
{
$match: {
$and: [
{ $expr: { $eq: ["$$id", "$roomId"] } },
{ read: { $ne: "A" } }
]
}
},
{
$group: {
_id: null,
count: { $sum: 1 }
}
}
],
as: "subRoom.notRead"
}
},
{
$addFields: {
"subRoom.notRead": { $sum: "$subRoom.notRead.count" }
}
},
{
$group: {
_id: "$_id",
name: { $first: "$name" },
id: { $first: "$id" },
subRoom: { $push: "$subRoom" }
}
}
])
Playground
Second option without using $unwind stage,
$lookup with notification collection using pipeline, let to pass id to pipeline, check condition for roomId and user should not read notification
$group by null and count total unread notifications
$map to iterate loop of subRoom array
$filter to iterate loop of return result from lookup notifications count and get current subRoom document
$let to declare a variable n and assign above filtered result to it and return $sum from count
$mergeObjects to merge current object of subRoom and new field notRead
db.rooms.aggregate([
{
$lookup: {
from: "nitifications",
let: { id: "$subRoom.id" },
pipeline: [
{
$match: {
$and: [
{ $expr: { $in: ["$roomId", "$$id"] } },
{ read: { $ne: "A" } }
]
}
},
{
$group: {
_id: "$roomId",
count: { $sum: 1 }
}
}
],
as: "notRead"
}
},
{
$project: {
id: 1,
name: 1,
subRoom: {
$map: {
input: "$subRoom",
as: "s",
in: {
$mergeObjects: [
"$$s",
{
notRead: {
$let: {
vars: {
n: {
$filter: {
input: "$notRead",
cond: { $eq: ["$$this._id", "$$s.id"] }
}
}
},
in: { $sum: "$$n.count" }
}
}
}
]
}
}
}
}
}
])
Playground
Related
In below example, looking for new partner suggestions for user abc. abc has already sent a request to 123 so that can be ignored. rrr has sent request to abc but rrr is in the fromUser field so rrr is still a valid row to be shown as suggestion to abc
I have two collections:
User collection
[
{
_id: "abc",
name: "abc",
group: 1
},
{
_id: "xyz",
name: "xyyy",
group: 1
},
{
_id: "123",
name: "yyy",
group: 1
},
{
_id: "rrr",
name: "tttt",
group: 1
},
{
_id: "eee",
name: "uuu",
group: 1
}
]
Partnership collection (if users have already partnered)
[
{
_id: "abc_123",
fromUser: "abc",
toUser: "123"
},
{
_id: "rrr_abc",
fromUser: "rrr",
toUser: "abc"
},
{
_id: "xyz_rrr",
fromUser: "xyz",
toUser: "rrr"
}
]
My query below excludes the user rrr but it should not because its not listed in toUser field in the partnership collection corresponding to the user abc.
How to modify this query to include user rrr in this case?
db.users.aggregate([
{
$match: {
group: 1,
_id: {
$ne: "abc"
}
}
},
{
$lookup: {
from: "partnership",
let: {
userId: "$_id"
},
as: "prob",
pipeline: [
{
$set: {
users: [
"$fromUser",
"$toUser"
],
u: "$$userId"
}
},
{
$match: {
$expr: {
$and: [
{
$in: [
"$$userId",
"$users"
]
},
{
$in: [
"abc",
"$users"
]
}
]
}
}
}
]
}
},
{
$match: {
"prob.0": {
$exists: false
}
}
},
{
$sample: {
size: 1
}
},
{
$unset: "prob"
}
])
https://mongoplayground.net/p/utGMeHFRGmt
Your current query does not allow creating an existing connection regardless of the connection direction. If the order of the connection is important use:
db.users.aggregate([
{$match: {
group: 1,
_id: {$ne: "abc"}
}
},
{$lookup: {
from: "partnership",
let: { userId: {$concat: ["abc", "_", "$_id"]}},
as: "prob",
pipeline: [{$match: {$expr: {$eq: ["$_id", "$$userId"]}}}]
}
},
{$match: {"prob.0": {$exists: false}}},
{$sample: {size: 1}},
{$unset: "prob"}
])
See how it works on the playground example
For MongoDB 5 and later, I'd propose the following aggregation pipeline:
db.users.aggregate([
{
$match: {
group: 1,
_id: {
$ne: "abc"
}
}
},
{
$lookup: {
from: "partnership",
as: "prob",
localField: "_id",
foreignField: "toUser",
pipeline: [
{
$match: {
fromUser: "abc",
}
}
]
}
},
{
$match: {
"prob.0": {
$exists: false
}
}
},
{
$unset: "prob"
}
])
The following documents are returned (full result without the $sample stage):
[
{
"_id": "eee",
"group": 1,
"name": "uuu"
},
{
"_id": "rrr",
"group": 1,
"name": "tttt"
},
{
"_id": "xyz",
"group": 1,
"name": "xyyy"
}
]
The main difference is that the lookup connects the collections by the toUser field (see localField, foreignField) and uses a minimal pipeline to restrict the results further to only retrieve the requests from the current user document to "abc".
See this playground to test.
When using MongoDB < 5, you cannot use localField and foreignField to run the pipeline only on a subset of the documents in the * from*
collection. To overcome this, you can use this aggregation pipeline:
db.users.aggregate([
{
$match: {
group: 1,
_id: {
$ne: "abc"
}
}
},
{
$lookup: {
from: "partnership",
as: "prob",
let: {
userId: "$_id"
},
pipeline: [
{
$match: {
$expr: {
$and: [
{
$eq: [
"$fromUser",
"abc"
]
},
{
$eq: [
"$toUser",
"$$userId"
]
}
]
}
}
}
]
}
},
{
$match: {
"prob.0": {
$exists: false
}
}
},
{
$unset: "prob"
}
])
The results are the same as for the upper pipeline.
See this playground to test.
For another, another way, this query starts from the partnership collection, finds which users to exclude, and then does a "$lookup" for everybody else. The remainder is just output formatting, although it looks like you may want to add a "$sample" stage at the end.
db.partnership.aggregate([
{
"$match": {
"fromUser": "abc"
}
},
{
"$group": {
"_id": null,
"exclude": {"$push": "$toUser" }
}
},
{
"$lookup": {
"from": "users",
"let": {
"exclude": {"$concatArrays": [["abc"], "$exclude"]
}
},
"pipeline": [
{
"$match": {
"$expr": {
"$not": {"$in": ["$_id", "$$exclude"]}
}
}
}
],
"as": "output"
}
},
{
"$project": {
"_id": 0,
"output": 1
}
},
{"$unwind": "$output"},
{"$replaceWith": "$output"}
])
Try it on mongoplayground.net.
My first collection is as below, I am searching the document with the email and match the particular jobid inside the jobs array. Then insert the document of second collection by matching _id with jobs.Process.profile_id.
{
"_id": {
"$oid": "6229d3cfdbfc81a8777e4821"
},
"jobs": [
{
"job_ID": {
"$oid": "62289ded8079821eb24760e0"
},
"Process": [
{
"profile_id": {
"$oid": "6285e571681188e83d434797"
}
},
{
"profile_id": {
"$oid": "6285e571681188e83d434799"
}
}
],
},
{
"job_ID": {
"$oid": "6228a252fb4554dd5c48202a"
},
"Process": [
{
"profile_id": {
"$oid": "62861067dc9771331e61df5b"
}
}
],
},
{
"job_ID": {
"$oid": "622af1c391b290d34701af9f"
},
"Process": [
""
],
}
],
"email": "********#gmail.com"
}
and my second collection is, I need to insert this document in my first collection by matching with jobs.Process.profile_id.
{
"_id": {
"$oid": "6285e571681188e83d434797"
},
"Name": "Lakshdwanan",
"Location":"California"
}
I have tried with query,
aggregate([
{ $match: { email: email } },
{
$lookup: {
from: 'user__profiles',
localField: 'jobs.Process.profile_id',
foreignField: '_id',
as: 'jobings',
},
},
{
$addFields: {
jobings: {
$map: {
input: {
$filter: {
input: '$jobs',
as: 'm',
cond: {
$eq: ['$$m.job_ID', objInstance],
},
},
},
as: 'm',
in: {
$mergeObjects: [
{
$arrayElemAt: [
{
$filter: {
input: '$jobings',
cond: {
$eq: ['$$this._id', '$$m.Process.profile_id'],
},
},
},
0,
],
},
'$$m',
],
},
},
},
},
},
{
$project: {
jobings: 1,
_id: 0,
},
},
]);
My output should only display second collection document based on the first collection document matching.
EDIT: If you want the data for a specific job only, it is better to $filter the jobs before the $lookup step. After the $lookup, just $unwind and format:
db.firstCol.aggregate([
{
$match: {email: email}
},
{
$project: {
jobs: {
$filter: {
input: "$jobs",
as: "item",
cond: {$eq: ["$$item.job_ID", objInstance]}
}
},
_id: 0
}
},
{
$lookup: {
from: "user__profiles",
localField: "jobs.Process.profile_id",
foreignField: "_id",
as: "jobings"
}
},
{
$project: {res: "$jobings", _id: 0}
},
{
$unwind: "$res"
},
{
$replaceRoot: {newRoot: "$res"}
}
])
Playground
The jobs.Process.profile_id is the user__profiles _id, so no need to merge anything...The results are documents from user__profiles collection "as is" but they can be formatted as wanted..._id key name can be renamed profile_id easily.
I have a MongoDB document like this:
[
{
"_id": {
"$oid": "5ff09030cd55d6d9f378d460"
},
"username": "a value",
"userid": "123456",
"last_access_ts": 1612426253,
"last_access": "2021-2-4 9:10:53",
"anotherid": 12345678910,
"verified_date": "2021-1-2 16:24:32",
"verified_ts": 1609601072,
"group_users": {
"-1001159747589": [
{
"anotherid": 12345678910,
"userid": "123456"
}
],
"-1001143137644": [
{
"anotherid": 12345678910,
"userid": "123456"
}
],
"-1001368608972": [
{
"anotherid": 12345678910,
"userid": "123456"
}
]
},
"registered_access": "2021-1-2 16:24:42",
}
]
I've two questions.
First one: I need to count the elements inside each group_users[key] object, and I'm stuck with this aggregate:
db.collection.aggregate([
{
$match: {
username: "a value"
}
},
{
$project: {
_id: 1,
userid: 1,
"groups": {
"$objectToArray": "$group_users"
}
}
},
{
$unwind: "$groups",
},
])
This aggregate gives me this result:
[
{
"_id": ObjectId("5ff09030cd55d6d9f378d460"),
"groups": {
"k": "-1001449720492",
"v": [
{
"anotherid": 12345678910,
"userid": "123456"
}
]
},
"userid": "123456"
},
{
"_id": ObjectId("5ff09030cd55d6d9f378d460"),
"groups": {
"k": "-1001159747589",
"v": [
{
"anotherid": 12345678910,
"userid": "123456"
}
]
},
"userid": "123456"
},
{
"_id": ObjectId("5ff09030cd55d6d9f378d460"),
"groups": {
"k": "-1001143137644",
"v": [
{
"anotherid": 12345678910,
"userid": "123456"
}
]
},
"userid": "123456"
}
]
How can I count each single groups[v] and then re-group the data? I would like to have a result like:
{
... some user data
"groups": {
"group_key": "count",
"second_group_key": "count",
"third_group_key": "count"
}
}
Is it possible with aggregate or I need to loop in the code?
My second question is always about the group_users. Is possible to have, recursively, the user data inside a group_users object?
I mean, every object inside group_users is an array of users; from this array can I have the user data (maybe with $graphLookup?) using the userid field or the anotherid field?
As a result from this second aggregate I would like to have something like this:
{
... some user data
"groups": {
"group_key": [{"userid": userid, "username": username}],
"second_group_key": [{"userid": userid, "username": username}],
"third_group_key": [{"userid": userid, "username": username}]
}
}
Obviously I can limit this "recursion" to 10 elements per time.
Thanks for any advice.
$objectToArray convert group_users object to array
$let to Bind variable group_arr for use in the specified expression, and returns the result of the expression.
$map to iterate loop of bind variable group_arr, get size of total element of v and return k and v,
$arrayToObject convert returned array from $map to object
db.collection.aggregate([
{ $match: { username: "a value" } },
{
$project: {
_id: 1,
userid: 1,
groups: {
$let: {
vars: { group_arr: { $objectToArray: "$group_users" } },
in: {
$arrayToObject: {
$map: {
input: "$$group_arr",
in: {
k: "$$this.k",
v: { $size: "$$this.v" }
}
}
}
}
}
}
}
}
])
Playground
Second question,
$unwind deconstruct groups array
$lookup with pipeline, match anotherid $in condition and return required fields
$group by _id and reconstruct groups array
$arrayToObject convert groups array to object
db.collection.aggregate([
{ $match: { username: "a value" } },
{
$project: {
_id: 1,
userid: 1,
groups: { $objectToArray: "$group_users" }
}
},
{ $unwind: "$groups" },
{
$lookup: {
from: "collection",
let: { anotherid: "$groups.v.anotherid" },
pipeline: [
{ $match: { $expr: { $in: ["$anotherid", "$$anotherid"] } } },
{
$project: {
_id: 0,
userid: 1,
username: 1
}
}
],
as: "groups.v"
}
},
{
$group: {
_id: "$_id",
groups: { $push: "$groups" },
userid: { $first: "$userid" }
}
},
{ $addFields: { groups: { $arrayToObject: "$groups" } } }
])
Playground
I got two collections.
One contains an array of objects. These objects own a field with an id to a document in another collection.
The goal is to "replace" the ref by the document. Sounds simple but I have no clue how to archive this.
E.G.
Collection "Product"
{ "_id": 1,
"alias": "ProductA"
},
{ "_id": 2,
"alias": "ProductC"
}
Collection "Order"
{ "_id": 5765,
"cart": [
{
"product": 1,
"qty": 7
}, {
"product": 2,
"qty": 6
}
]
}
What I need by a query is this:
{ "_id": 5765,
"cart": [
{
"product": {
"_id": 1,
"alias": "ProductA"
},
"qty": 7
}, {
"product": {
"_id": 2,
"alias": "ProductC"
},
"qty": 6
}
]
}
I tried a simple lookup, but the array will only contains the products. What do I need to change?
{
$lookup: {
from: "products",
let: {
tmp: "$cart.product"
},
pipeline: [
{
$match: {
$expr: {
$in: ["$_id", "$$tmp"]
}
}
}
],
as: "cart.product"
}
}
Thanks for your help.
I added a new $addFields stage to transform the output from the $lookup stage - it gets the desired output:
db.order.aggregate([
{
$lookup: {
from: "product",
let: {
tmp: "$cart.product"
},
pipeline: [
{
$match: {
$expr: {
$in: ["$_id", "$$tmp"]
}
}
}
],
as: "products"
}
},
{
$addFields: {
cart: {
$map: {
input: "$cart", as: "ct",
in: {
product: {
$arrayElemAt: [
{ $filter: {
input: "$products", as: "pr",
cond: {
$eq: [ "$$ct.product", "$$pr._id" ]
}
}
}, 0 ]
},
qty: "$$ct.qty"
}
}
}
}
}
] ).pretty()
I'm having hard time getting $lookup with a pipeline to work in MongoDB Compass.
I have the following collections:
Toys
Data
[
{
"_id": {
"$oid": "5d233c3bb173a546386c59bb"
},
"type": "multiple",
"tags": [
""
],
"searchFields": [
"Jungle Stampers - Two",
""
],
"items": [
{
"$oid": "5d233c3cb173a546386c59bd"
},
{
"$oid": "5d233c3cb173a546386c59be"
},
{
"$oid": "5d233c3cb173a546386c59bf"
},
{
"$oid": "5d233c3cb173a546386c59c0"
},
{
"$oid": "5d233c3cb173a546386c59c1"
},
{
"$oid": "5d233c3cb173a546386c59c2"
},
{
"$oid": "5d233c3cb173a546386c59c3"
},
{
"$oid": "5d233c3cb173a546386c59c4"
}
],
"name": "Jungle Stampers - Two",
"description": "",
"status": "active",
"category": {
"$oid": "5cfe727cac920000086b880e"
},
"subCategory": "Stamp Sets",
"make": "",
"defaultCharge": null,
"defaultOverdue": null,
"sizeCategory": {
"$oid": "5d0cfde57561e107c88fbde3"
},
"ageFrom": {
"$numberInt": "24"
},
"ageTo": {
"$numberInt": "120"
},
"images": [
{
"_id": {
"$oid": "5d233c3bb173a546386c59bc"
},
"id": {
"$oid": "5d233c39b173a546386c59ba"
},
"url": "/toyimages/5d233c39b173a546386c59ba.jpg",
"thumbUrl": "/toyimages/thumbs/tn_5d233c39b173a546386c59ba.jpg"
}
],
"__v": {
"$numberInt": "2"
}
}
]
Loans
Data
[
{
"_id": {
"$oid": "5e1f1661b712215978c746d9"
},
"tags": [],
"member": {
"$oid": "5e17495e4f81ab3f900dbb63"
},
"source": "admin portal - potter1#gmail.com",
"items": [
{
"id": {
"$oid": "5e1f160eb712215978c746d5"
},
"status": "new",
"_id": {
"$oid": "5e1f1661b712215978c746db"
},
"toy": {
"$oid": "5d233c3bb173a546386c59bb"
},
"cost": {
"$numberInt": "0"
}
},
{
"id": {
"$oid": "5e1f160eb712215978c746d5"
},
"status": "new",
"_id": {
"$oid": "5e1f1661b712215978c746da"
},
"toy": {
"$oid": "5d233b1ab173a546386c59b5"
},
"cost": {
"$numberInt": "0"
}
}
],
"dateEntered": {
"$date": {
"$numberLong": "1579095632870"
}
},
"dateDue": {
"$date": {
"$numberLong": "1579651200000"
}
},
"__v": {
"$numberInt": "0"
}
}
]
I am trying to return a list of toys and their associated loans that have a status of 'new' or 'out'.
I can use the following $lookup aggregate to fetch all loans:
{
from: 'loans',
localField: '_id',
foreignField: 'items.toy',
as: 'loansSimple'
}
However I am trying to use a pipeline to load loans that have the two statuses I am interested in, but it always only returns zero documents:
{
from: 'loans',
let: {
'toyid': '$_id'
},
pipeline: [
{
$match: {
$expr: {
$and: [
{$eq: ['$items.toy', '$$toyid']},
{$eq: ['$items.status', 'new']} // changed from $in to $eq for simplicity
]
}
}
}
],
as: 'loans'
}
This always seems to return 0 documents, however I arrange it:
Have I made a mistake somewhere?
I'm using MongoDB Atlas, v4.2.2, MongoDB Compass v 1.20.4
You are trying to search $$toyid inside inner array, but Operator Expression $eq cannot resolve it.
Best solution: $let (returns filtered loans by criteria) + $filter (applies filter for inner array) operator helps us to get desired result.
db.toys.aggregate([
{
$lookup: {
from: "loans",
let: {
"toyid": "$_id",
"toystatus": "new"
},
pipeline: [
{
$match: {
$expr: {
$gt: [
{
$size: {
$let: {
vars: {
item: {
$filter: {
input: "$items",
as: "tmp",
cond: {
$and: [
{
$eq: [
"$$tmp.toy",
"$$toyid"
]
},
{
$eq: [
"$$tmp.status",
"$$toystatus"
]
}
]
}
}
}
},
in: "$$item"
}
}
},
0
]
}
}
}
],
as: "loans"
}
}
])
MongoPlayground
Alternative solution 1. Use $unwind to flatten items attribute. (We create extra field named tmp which stores items value, flatten it with $unwind operator, match as you were doing and then exclude from result)
db.toys.aggregate([
{
$lookup: {
from: "loans",
let: {
"toyid": "$_id"
},
pipeline: [
{
$addFields: {
tmp: "$items"
}
},
{
$unwind: "$tmp"
},
{
$match: {
$expr: {
$and: [
{
$eq: [
"$tmp.toy",
"$$toyid"
]
},
{
$eq: [
"$tmp.status",
"new"
]
}
]
}
}
},
{
$project: {
tmp: 0
}
}
],
as: "loans"
}
}
])
MongoPlayground
Alternative solution 2. We use $reduce to create toy's array and with $in operator we check if toyid exists inside this array.
db.toys.aggregate([
{
$lookup: {
from: "loans",
let: {
"toyid": "$_id"
},
pipeline: [
{
$addFields: {
toys: {
$reduce: {
input: "$items",
initialValue: [],
in: {
$concatArrays: [
"$$value",
[
"$$this.toy"
]
]
}
}
}
}
},
{
$match: {
$expr: {
$in: [
"$$toyid",
"$toys"
]
}
}
},
{
$project: {
toys: 0
}
}
],
as: "loans"
}
}
])
$expr receives aggregation expressions, At that point $$items.toy is parsed for each element in an array as you would expect (however if it would it will still give you "bad" results as you'll get loans that have the required toy id and any other item with status new in their items array).
So you have two options to work around this:
If you don't care about the other items in the lookup'd document you can add an $unwind stage at the start of the lookup pipeline like so:
{
from: 'loans',
let: {
'toyid': '$_id'
},
pipeline: [
{
$unwind: "$items"
},
{
$match: {
$expr: {
$and: [
{$eq: ['$items.toy', '$$toyid']},
{$eq: ['$items.status', 'new']} // changed from $in to $eq for simplicity
]
}
}
}
],
as: 'loans'
}
If you do care about them just iterate the array in one of the possible ways to get a 'correct' match, here is an example using $filter
{
from: 'loads',
let: {
'toyid': '$_id'
},
pipeline: [
{
$addFields: {
temp: {
$filter: {
input: "$items",
as: "item",
cond: {
$and: [
{$eq: ["$$item.toy", "$$toyid"]},
{$eq: ["$$item.status", "new"]}
]
}
}
}
}
}, {$match: {"temp.0": {exists: true}}}
],
as: 'loans'
}