how to store away sequence variables with constraints in swift - swift

I wanted to create a "where_non_null" operation that works on any swift sequence - which is easy if you return an array, but obviously that is potentially bad performance wise - because you are forcing the entire sequence to resolve in memory - so I created the following that just goes line by line:
//
// this iterates through the underlying sequence, and returns only the values that are not null
//
public class Not_null_iterator<T> : IteratorProtocol
{
public typealias Element = T
private let next_function : () -> T?
init<T_iterator: IteratorProtocol>( _ source: T_iterator ) where T_iterator.Element == Optional<T>
{
var iterator = source
next_function =
{
while (true)
{
if let next_value = iterator.next()
{
if let not_null_value = next_value
{
return not_null_value
}
}
else
{
return nil
}
}
}
}
public func next() -> T? {
next_function()
}
}
//
// a sequence wrapping an underlying sequence, that removes any nulls as we go through
//
public class Not_null_sequence<T > : Sequence
{
private var iterator_creator : () -> Not_null_iterator<T>
init<T_source_sequence : Sequence >( _ source : T_source_sequence ) where T_source_sequence.Element == Optional<T>
{
iterator_creator =
{
Not_null_iterator(source.makeIterator())
}
}
public func makeIterator() -> Not_null_iterator<T>
{
iterator_creator()
}
}
extension Sequence
{
//
// return only the not null values in the sequence without ever resolving more than one item in memory at one time and remove the optionality on the type
//
func where_not_null<T>() -> Not_null_sequence<T> where Element == Optional<T>
{
return Not_null_sequence( self)
}
}
class Where_not_null_tests : XCTestCase
{
public func test_where_not_null()
{
let source = [1, 2, 3, nil, 4]
let checked : [Int] = Array(source.where_not_null())
XCTAssertEqual([1,2,3,4],checked)
}
}
which works great - however I had to define the next() and make_iterator() functions in the constructor, because I couldn't find any type safe way of putting the source into a class level variable.
Is there a way of doing that?
[and yes, I'm aware swift people prefer camel case]

Rather than just using one generic parameter, you'd need two generic parameters. You can't just constrain one generic parameter to say that it has to be some sequence with an element of some Optional. You need another generic parameter to say what the optional's type is:
class NotNilIterator<T: IteratorProtocol, U>: IteratorProtocol where T.Element == U? {
typealias Element = U
var iterator: T
init(_ source: T) {
iterator = source
}
func next() -> Element? {
// I feel this is clearer what is going on
while true {
switch iterator.next() {
case .some(.none):
continue
case .none:
return nil
case .some(.some(let element)):
return element
}
}
}
}
class NotNilSequence<T: Sequence, U> : Sequence where T.Element == U?
{
let sequence: T
init(_ source : T)
{
sequence = source
}
public func makeIterator() -> NotNilIterator<T.Iterator, U>
{
.init(sequence.makeIterator())
}
}
whereNotNil would then be declared like this:
func whereNotNil<T>() -> NotNilSequence<Self, T> where Self.Element == T?
{
return .init(self)
}
Note the use of self types. The first parameter is the type of the underlying sequence, the second is the non-optional type.
Note that this sort of "lazily computed sequence" is already built into Swift. To lazily filter out the nils, do:
let array = [1, 2, 3, nil, 4]
let arrayWithoutNil = array.lazy.compactMap { $0 }
The downside is that the type names are quite long. arrayWithoutNil is of type
LazyMapSequence<LazyFilterSequence<LazyMapSequence<LazySequence<[Int?]>.Elements, Int?>>, Int>
But you can indeed get non-optional Ints out of it, so it does work.

The way swift generics work can sometimes be very confusing (but has it's advantages). Instead of declaring that a variable is of a generic protocol (resp. a protocol with associated types), you instead declare another generic type which itself conforms to your protocol. Here's your iterator as an example (I have taken the liberty to clean up the code a bit):
public class Not_null_iterator<T, T_iterator> : IteratorProtocol where
T_iterator: IteratorProtocol,
T_iterator.Element == Optional<T>
{
private var source: T_iterator
init(_ source: T_iterator) {
self.source = source
}
public func next() -> T? {
while let next_value = source.next()
{
if let not_null_value = next_value
{
return not_null_value
}
}
return nil
}
}
The non-null sequence works analogous:
public class Not_null_sequence<T, Source>: Sequence where
Source: Sequence,
Source.Element == Optional<T>
{
private var source: Source
init(_ source: Source) {
self.source = source
}
public func makeIterator() -> Not_null_iterator<T, Source.Iterator> {
Not_null_iterator(self.source.makeIterator())
}
}
Using this some IteratorProtocol is just a nice way to let the compiler figure out the type. It is equivalent to saying Not_null_iterator<T, Source.Iterator>
As a (potentially) interesting side-note, to clean up the generic mess even more, you can nest the iterator class inside the Not_null_sequence:
public class Not_null_sequence<T, Source>: Sequence where
Source: Sequence,
Source.Element == Optional<T>
{
private var source: Source
init(_ source: Source) {
self.source = source
}
public func makeIterator() -> Iterator{
Iterator(self.source.makeIterator())
}
public class Iterator: IteratorProtocol {
private var source: Source.Iterator
init(_ source: Source.Iterator) {
self.source = source
}
public func next() -> T? {
while let next_value = source.next()
{
if let not_null_value = next_value
{
return not_null_value
}
}
return nil
}
}
}

Related

conforming to Sequence and IteratorProtocol in Swift

I am trying to write my own version of IndexingIterator to increase my understanding of Sequence. I haven't assign any type to associatetype Iterator in my struct. However, the complier doesn't complain about that and I get a default implementation of makeIterator.
Following are my codes:
struct __IndexingIterator<Elements: IndexableBase>: Sequence, IteratorProtocol {
mutating func next() -> Elements._Element? {
return nil
}
}
let iterator = __IndexingIterator<[String]>()
// this works and returns an instance of __IndexingIterator<Array<String>>. why?
iterator.makeIterator()
I think there must be some extensions on Sequence which add the default implementation. Thus, I searched it in Sequence.swift and only found this.
extension Sequence where Self.Iterator == Self, Self : IteratorProtocol {
/// Returns an iterator over the elements of this sequence.
public func makeIterator() -> Self {
return self
}
}
I thought it would be like this:
extension Sequence where Self: IteratorProtocol {
typealias Iterator = Self
...
}
Did I miss something or I misunderstood the extension?
It looks like Alexander's answer is correct. Here's a boiled down version, without using Sequence:
protocol MySequence {
associatedtype Iterator: IteratorProtocol
func maakeIterator() -> Iterator
}
extension MySequence where Self.Iterator == Self, Self : IteratorProtocol {
/// Returns an iterator over the elements of this sequence.
func maakeIterator() -> Self {
return self
}
}
struct __IndexingIterator<Element>: MySequence, IteratorProtocol {
mutating func next() -> Element? {
return nil
}
}
let iterator = __IndexingIterator<[String]>()
iterator.maakeIterator()
You can write your own Iterator which confrom to IteratorProtocol first, then write what you need confrom to Sequence.
Make sure that you have to implement requried func.
struct IteratorTest : IteratorProtocol {
typealias Element = Int
var count : Int
init(count :Int) {
self.count = count
}
mutating func next() -> Int? {
if count == 0 {
return nil
}else {
defer {
count -= 1
}
return count;
}
}
}
struct CountDown : Sequence {
typealias Iterator = IteratorTest
func makeIterator() -> IteratorTest {
return IteratorTest.init(count: 10)
}
}
The type alias isn't necessary, because the Element associated type is inferred from your implementation of next().
Here's a simple example:
protocol ResourceProvider {
associatedtype Resoruce
func provide() -> Resoruce;
}
struct StringProvider {
func provide() -> String { // "Resource" inferred to be "String"
return "A string"
}
}

Adopting CollectionType (Collection) in Swift

I'm writing a graphics library to display data in a graph. Since most of the projects I do tend to have a large learning component in them, I decided to create a generically typed struct to manage my data set DataSet<T: Plottable> (note here that Plottable is also Comparable).
In trying to conform to MutableCollectionType, I've run across an error. I'd like to use the default implementation of sort(), but the compiler is giving the following error when trying to use the sorting function.
Ambiguous reference to member 'sort()'
Here's a code example:
var data = DataSet<Int>(elements: [1,2,3,4])
data.sort() //Ambiguous reference to member 'sort()'
The compiler suggests two candidates, but will not actually display them to me. Note that the compiler error goes away if I explicitly implement sort() on my struct.
But the bigger question remains for me. What am I not seeing that I expect the default implementation to be providing? Or am I running across a bug in Swift 3 (this rarely is the case... usually I have overlooked something).
Here's the balance of the struct:
struct DataSet<T: Plottable>: MutableCollection, BidirectionalCollection {
typealias Element = T
typealias Iterator = DataSetIterator<T>
typealias Index = Int
/**
The list of elements in the data set. Private.
*/
private var elements: [Element] = []
/**
Initalize the data set with an array of data.
*/
init(elements data: [T] = []) {
self.elements = data
}
//MARK: Sequence Protocol
func makeIterator() -> DataSetIterator<T> {
return DataSetIterator(self)
}
//MARK: Collection Protocol
subscript(_ index:DataSet<T>.Index) -> DataSet<T>.Iterator.Element {
set {
elements[index] = newValue
}
get {
return elements[index]
}
}
subscript(_ inRange:Range<DataSet<T>.Index>) -> DataSet<T> {
set {
elements.replaceSubrange(inRange, with: newValue)
}
get {
return DataSet<T>(elements: Array(elements[inRange]))
}
}
//required index for MutableCollection and BidirectionalCollection
var endIndex: Int {
return elements.count
}
var startIndex: Int {
return 0
}
func index(after i: Int) -> Int {
return i+1
}
func index(before i: Int) -> Int {
return i-1
}
mutating func append(_ newElement: T) {
elements.append(newElement)
}
// /**
// Sorts the elements of the DataSet from lowest value to highest value.
// Commented because I'd like to use the default implementation.
// - note: This is equivalent to calling `sort(by: { $0 < $1 })`
// */
// mutating func sort() {
// self.sort(by: { $0 < $1 })
// }
//
// /**
// Sorts the elements of the DataSet by an abritrary block.
// */
// mutating func sort(by areInIncreasingOrder: #noescape (T, T) -> Bool) {
// self.elements = self.elements.sorted(by: areInIncreasingOrder)
// }
/**
Returns a `DataSet<T>` with the elements sorted by a provided block.
This is the default implementation `sort()` modified to return `DataSet<T>` rather than `Array<T>`.
- returns: A sorted `DataSet<T>` by the provided block.
*/
func sorted(by areInIncreasingOrder: #noescape (T, T) -> Bool) -> DataSet<T> {
return DataSet<T>(elements: self.elements.sorted(by: areInIncreasingOrder))
}
func sorted() -> DataSet<T> {
return self.sorted(by: { $0 < $1 })
}
}
Your DataSet is a BidirectionalCollection. The sort() you're trying to use requires a RandomAccessCollection. The most important thing you need to add is an Indicies typealias.
typealias Indices = Array<Element>.Indices
Here's my version of your type:
protocol Plottable: Comparable {}
extension Int: Plottable {}
struct DataSet<Element: Plottable>: MutableCollection, RandomAccessCollection {
private var elements: [Element] = []
typealias Indices = Array<Element>.Indices
init(elements data: [Element] = []) {
self.elements = data
}
var startIndex: Int {
return elements.startIndex
}
var endIndex: Int {
return elements.endIndex
}
func index(after i: Int) -> Int {
return elements.index(after: i)
}
func index(before i: Int) -> Int {
return elements.index(before: i)
}
subscript(position: Int) -> Element {
get {
return elements[position]
}
set {
elements[position] = newValue
}
}
subscript(bounds: Range<Int>) -> DataSet<Element> {
get {
return DataSet(elements: Array(elements[bounds]))
}
set {
elements[bounds] = ArraySlice(newValue.elements)
}
}
}
var data = DataSet(elements: [4,2,3,1])
data.sort()
print(data.elements) // [1,2,3,4]
You don't actually need an Iterator if you don't want one. Swift will give you Sequence automatically if you implement Collection.

Conforming a new protocol to Sequence with a default makeIterator() implementation

I made a (very basic) BinaryTree protocol:
public enum BinaryTreeChildSide {
case left, right
}
public protocol BinaryTree {
associatedtype Element
associatedtype Index
func child(of index: Index, side: BinaryTreeChildSide) -> Index?
var rootIndex: Index? { get }
subscript(position: Index) -> Element { get }
}
For a basic iterative in-order traversal, I made a BinaryTreeIterator (note that I don't implement Sequence just yet):
public extension BinaryTree {
func makeIterator() -> BinaryTreeIterator<Self> {
return BinaryTreeIterator(self)
}
}
public struct BinaryTreeIterator<Tree: BinaryTree>: IteratorProtocol {
private let tree: Tree
private var stack: [Tree.Index]
private var index: Tree.Index?
private init(_ tree: Tree) {
self.tree = tree
stack = []
index = tree.rootIndex
}
public mutating func next() -> Tree.Element? {
while let theIndex = index {
stack.append(theIndex)
index = tree.child(of: theIndex, side: .left)
}
guard let currentIndex = stack.popLast() else { return nil }
defer { index = tree.child(of: currentIndex, side: .right) }
return tree[currentIndex]
}
}
Implementing a binary heap to this protocol is also pretty straight-forward:
public struct BinaryHeap<Element> {
private var elements: [Element]
public init(_ elements: [Element]) {
self.elements = elements
}
}
extension BinaryHeap: BinaryTree {
private func safeIndexOrNil(_ index: Int) -> Int? {
return elements.indices.contains(index) ? index : nil
}
public func child(of index: Int, side: BinaryTreeChildSide) -> Int? {
switch side {
case .left: return safeIndexOrNil(index * 2 + 1)
case .right: return safeIndexOrNil(index * 2 + 2)
}
}
public var rootIndex: Int? { return safeIndexOrNil(0) }
public subscript(position: Int) -> Element {
return elements[position]
}
}
So far, so good. I can now make a simple heap and iterate through its elements:
let heap = BinaryHeap([4, 2, 6, 1, 3, 5, 7])
var iterator = heap.makeIterator()
while let next = iterator.next() {
print(next, terminator: " ")
}
// 1 2 3 4 5 6 7
This works, but of course the goal of implementing makeIterator() is to conform to Sequence. however, if I replace
public protocol BinaryTree {
with
public protocol BinaryTree: Sequence {
then the compiler complains that BinaryHeap doesn't implement Sequence because the associated type Iterator couldn't be inferred. If I manually specify the Iterator type with
extension BinaryHeap: BinaryTree {
typealias Iterator = BinaryTreeIterator<BinaryHeap>
...
}
then the compiler shows an error that Iterator circularly references itself. So that might be why the Iterator type couldn't be inferred.
Interestingly, it works if I wrap my custom BinaryTreeIterator in an AnyIterator instance:
public extension BinaryTree {
func makeIterator() -> AnyIterator<Element> {
return AnyIterator(BinaryTreeIterator(self))
}
}
let heap = BinaryHeap([4, 2, 6, 1, 3, 5, 7])
for number in heap {
print(number, terminator: " ")
}
// 1 2 3 4 5 6 7
Apple's own IndexingIterator seems to work in a similar fashion to my BinaryTreeIterator:
public struct IndexingIterator<
Elements : IndexableBase
// FIXME(compiler limitation):
// Elements : Collection
> : IteratorProtocol, Sequence {
...
}
From the source code. Maybe the problem I'm facing might also be because of the compiler limitation mentioned there, but I don't know for sure.
Is there a way to conform BinaryTree to Sequence without using AnyIterator?
This is the farthest I could take it. Now the compiler will still complain about the heap not containing any makeIterator member
(which I thought was included by default once someone conforms to sequence—wrong turns out one must conform to Sequence ​and​ IteratorProtocol for the default implementation) and having a next—but once you add those methods its smooth sailing.
So makeIterator + next method to make Mr/Mrs/Preferred Gender Pronoun compiler happy.
public enum BinaryTreeChildSide {
case left, right
}
public struct BinaryTreeIterator<Tree: BinaryTree>: Sequence, IteratorProtocol {
private let tree: Tree
private var stack: [Tree.Index]
private var index: Tree.Index?
private init(_ tree: Tree) {
self.tree = tree
stack = []
index = tree.rootIndex
}
public mutating func next() -> Tree.Element? {
while let theIndex = index {
stack.append(theIndex)
index = tree.child(of: theIndex, side: .left)
}
guard let currentIndex = stack.popLast() else { return nil }
defer { index = tree.child(of: currentIndex, side: .right) }
return tree[currentIndex]
}
}
public protocol BinaryTree: Sequence {
associatedtype Element
associatedtype Index
func child(of index: Index, side: BinaryTreeChildSide) -> Index?
var rootIndex: Index? { get }
subscript(position: Index) -> Element { get }
}
extension BinaryTree {
func makeIterator() -> BinaryTreeIterator<Self> {
return BinaryTreeIterator(self)
}
}
extension BinaryHeap {
private func safeIndexOrNil(_ index: Int) -> Int? {
return elements.indices.contains(index) ? index : nil
}
public func child(of index: Int, side: BinaryTreeChildSide) -> Int? {
switch side {
case .left: return safeIndexOrNil(index * 2 + 1)
case .right: return safeIndexOrNil(index * 2 + 2)
}
}
public var rootIndex: Int? { return safeIndexOrNil(0) }
public subscript(position: Int) -> Element {
return elements[position]
}
}
public struct BinaryHeap<Element> {
private var elements: [Element]
public init(_ elements: [Element]) {
self.elements = elements
}
}
let heap = BinaryHeap([4, 2, 6, 1, 3, 5, 7])
var iterator = heap.makeIterator()
while let next = iterator.next() {
print(next, terminator: " ")
}
Apparently it was a Swift bug: my code compiles fine using Swift 3.1.

How can I write a function that will unwrap a generic property in swift assuming it is an optional type?

So far I have only been able to achieve this using a global function. I am not sure if it is possible but I was hoping to write an extension to a generic class that would hopefully achieve the same thing.
Below is the working global function it is using SignalProducer class from ReactiveCocoa but the principle should be the same for any generic class.
func ignoreNilValues <Value,Error> (producer: SignalProducer<Value?,Error>) -> SignalProducer<Value, Error> {
return producer.filter { return $0 != nil }.map { $0! }
}
Update:
I have made progress but have still fallen short of a complete solution
Given any class with some generic property
class GenericClass<SomeType> {
var someProperty: [SomeType] = []
}
How can I write an extension that will filter any optional values and return the value using the Wrapped type?
The following will filter any nil values but still return it as the Optional type.
protocol AnOptional {
var isNil: Bool {get}
}
extension Optional : AnOptional {
var isNil: Bool {
get {
guard let hasValue = self.map({ (value: Wrapped) -> Bool in
return true
}) else {
return true
}
return !hasValue
}
}
}
extension GenericClass where SomeType : AnOptional {
func filterNilValuesOfSomeProperty() -> [SomeType] {
return someProperty.filter({ (anOptional: AnOptional) -> Bool in
return !anOptional.isNil
})
}
}
As can be seen
let aClass = GenericClass<Int?>()
aClass.someProperty = [3,5,6,nil,4,3,6, nil]
let x = aClass.someProperty
//x = [Some(3),Some(5),Some(6),nil,Some(4),Some(3),Some(6), nil]
let y = aClass.filterNilValuesOfSomeProperty()
//y = [Some(3),Some(5),Some(6),Some(4),Some(3),Some(6)]
Is it possible to write a class extension that would return the wrapped type? In the example above it would be [Int] instead of [Int?].
I rewrote the global function solution for this example.
func ignoreNilValues <Value> (aClass: GenericClass<Value?>) -> GenericClass<Value> {
let aNewClass = GenericClass<Value>()
aNewClass.someProperty = aClass.someProperty.filter({ (v: Value?) -> Bool in
v != nil
}).map { (oldValue: Value?) -> Value in
return oldValue!
}
return aNewClass
}
let z = ignoreNilValues(aClass).someProperty
//z = [3, 5, 6, 4, 3, 6]
The "trick" is to define a protocol to which all optionals conform
(this is from Creating an extension to filter nils from an Array in Swift
with a minor simplification; the idea goes back to this Apple Forum Thread):
protocol OptionalType {
typealias Wrapped
func intoOptional() -> Wrapped?
}
extension Optional : OptionalType {
func intoOptional() -> Wrapped? {
return self
}
}
You can use that in your case as:
class GenericClass<SomeType> {
var someProperty: [SomeType] = []
}
extension GenericClass where SomeType : OptionalType {
func filterNilValuesOfSomeProperty() -> [SomeType.Wrapped] {
return someProperty.flatMap { $0.intoOptional() }
}
}
which uses the flatMap() method from SequenceType:
extension SequenceType {
/// Return an `Array` containing the non-nil results of mapping
/// `transform` over `self`.
///
/// - Complexity: O(*M* + *N*), where *M* is the length of `self`
/// and *N* is the length of the result.
#warn_unused_result
public func flatMap<T>(#noescape transform: (Self.Generator.Element) throws -> T?) rethrows -> [T]
}
Example:
let aClass = GenericClass<Int?>()
aClass.someProperty = [3,5,6,nil,4,3,6, nil]
let x = aClass.someProperty
print(x) // [Optional(3), Optional(5), Optional(6), nil, Optional(4), Optional(3), Optional(6), nil]
let y = aClass.filterNilValuesOfSomeProperty()
print(y) // [3, 5, 6, 4, 3, 6]
In Swift 3 and later the protocol has to be defined as
protocol OptionalType {
associatedtype Wrapped
func intoOptional() -> Wrapped?
}
I have this solution using in my app, create a protocol, and added an extension to Optional.
protocol OptionalUnwrap {
associatedtype Wrapped
func unwrap(default defaultValue: #autoclosure () -> Wrapped) -> Wrapped
}
extension Optional: OptionalUnwrap {
func unwrap(default defaultValue: #autoclosure () -> Wrapped) -> Wrapped {
if let value = self {
return value
}
return defaultValue()
}
}
You can use it like this, you have to provide a default value, so if optional is nil it will return the default value. It works with all types.
struct StructName {
var name: String
var age: Int
}
var structName3: StructName?
let unwrapped = structName3.unwrap(default: StructName(name: "", age: 2345))
print(unwrapped.age)
var version: Int?
version.unwrap(default: 5)
var subject: String? = "iOS"
subject.unwrap(default: "")

How can I write a protocol extension to get all the rawValues from an Swift enum

What I am trying to do is create a protocol extension to fetch an array of raw values from an enum. For example say I have the following:
enum TestType: String, EnumIteratable {
case unitTest = "Unit Test"
case uiTest = "UI Test"
}
class EnumIterator: NSObject {
class func iterateEnum<T: Hashable>(_: T.Type) -> AnyGenerator<T> {
var i = 0
return anyGenerator {
let next = withUnsafePointer(&i) { UnsafePointer<T>($0).memory }
return next.hashValue == i++ ? next : nil
}
}
class func getValues<T: Hashable>(_: T.Type) -> [T] {
let iterator = self.iterateEnum(T)
var returnArray = [T]()
for val in iterator {
returnArray.append(val)
}
return returnArray
}
}
How can I implement the protocol EnumIteratable so that I can call TestType.getRawValues() and have it return an string array of all the raw enum values?
Thanks!
Scott's solution is probably the one you want. But if you were looking for something more generic that you can apply to arbitrary future enumerations and allows for additional cases, you could try this:
First, you need a method to iterate over Enum cases. I used this implementation from here: https://stackoverflow.com/a/28341290/914887
func iterateEnum<T: Hashable>(_: T.Type) -> AnyGenerator<T> {
var i = 0
return anyGenerator {
let next = withUnsafePointer(&i) { UnsafePointer<T>($0).memory }
return next.hashValue == i++ ? next : nil
}
}
Then, you can create your protocol, that defines the static functions you want:
protocol EnumIteratable {
typealias ENUM_TYPE:Hashable, RawRepresentable = Self
static func getAllValues() -> [ ENUM_TYPE ]
static func getRawValues() -> [ ENUM_TYPE.RawValue ]
}
I used an associated type to allow the conforming enums to specify their type to the protocol. getAllValues is not strictly necessary, but it simplifies the logic.
Then, you can define your generic default implementations:
extension EnumIteratable {
static func getAllValues() -> [ ENUM_TYPE ]
{
var retval = [ ENUM_TYPE ]()
for item in iterateEnum( ENUM_TYPE )
{
retval.append( item )
}
return retval
}
static func getRawValues() -> [ ENUM_TYPE.RawValue ]
{
return getAllValues().map( { ( item:ENUM_TYPE ) -> ENUM_TYPE.RawValue in item.rawValue } )
}
}
Finally, all you need to do is conform to that protocol any time you need to iterate over the enum:
enum TestType: String, EnumIteratable {
case unitTest = "Unit Test"
case uiTest = "UI Test"
}
TestType.getRawValues()
The advantage here, is that I can add a new case for integrationTest and I only need to add that in one place.
You could just add a static property to return all enum values. For example:
enum RelationshipStatus: String {
case Single = "Single"
case Married = "Married"
case ItsComplicated = "It's complicated"
static let all: [RelationshipStatus] = [.Single, .Married, .ItsComplicated]
}
for status in RelationshipStatus.all {
print(status.rawValue)
}