MongoDb Create Aggregate Create query - mongodb

I have 3 table users,shifts,temporaryShifts,
shifts:[{_id:ObjectId(2222),name:"Morning"},{_id:ObjectId(454),name:"Night"}]
users:[{_id:ObjectId(123),name:"Albert",shift_id:ObjectId(2222)}]
temporaryShifts:[
{_id:2,userId:ObjectId(123),shiftId:ObjectId(454),type:"temporary",date:"2020-02-01"},
{_id:987,userId:ObjectId(123),shiftId:ObjectId(454),type:"temporary",date:"2020-02-03"},
{_id:945,userId:ObjectId(123),shiftId:ObjectId(454),type:"temporary",date:"2020-02-08"},
{_id:23,userId:ObjectId(123),shiftId:ObjectId(454),date:"2020-02-09"}]
i want to make a mongoose aggregate query then give me result :
get result between two dates for example :2020-02-01 2020-02-05,
resullts is :
[
{_id:ObjectId(123),name:"Albert",shift:[
{_id:2,shiftId:ObjectId(454),type:"temporary",date:"2020-02-01"},
{_id:2,shiftId:ObjectId(2222),type:"permanent",date:"2020-02-02"},
{_id:2,shiftId:ObjectId(454),type:"temporary",date:"2020-02-03"},
{_id:2,shiftId:ObjectId(2222),type:"permanent",date:"2020-02-04"},
{_id:2,shiftId:ObjectId(2222),type:"permanent",date:"2020-02-05"},
]}
]
in result type temporary mean selected date in table temporaryShift document available else type permanent
MongoPlayGround You Can edit

You can first project a date range array using $range, in your example it will be like [2020-02-01, 2020-02-02, 2020-02-03, 2020-02-04, 2020-02-05], then you can use the array to perform $lookup
db.users.aggregate([
{
$limit: 1
},
{
"$addFields": {
"startDate": ISODate("2020-02-01"),
"endDate": ISODate("2020-02-05")
}
},
{
"$addFields": {
"dateRange": {
"$range": [
0,
{
$add: [
{
$divide: [
{
$subtract: [
"$endDate",
"$startDate"
]
},
86400000
]
},
1
]
}
]
}
}
},
{
"$addFields": {
"dateRange": {
$map: {
input: "$dateRange",
as: "increment",
in: {
"$add": [
"$startDate",
{
"$multiply": [
"$$increment",
86400000
]
}
]
}
}
}
}
},
{
"$unwind": "$dateRange"
},
{
"$project": {
"name": 1,
"shiftId": 1,
"dateCursor": "$dateRange"
}
},
{
"$lookup": {
"from": "temporaryShifts",
"let": {
dateCursor: "$dateCursor",
shiftId: "$shiftId"
},
"pipeline": [
{
"$addFields": {
"parsedDate": {
"$dateFromString": {
"dateString": "$date",
"format": "%Y-%m-%d"
}
}
}
},
{
$match: {
$expr: {
$and: [
{
$eq: [
"$$dateCursor",
"$parsedDate"
]
}
]
}
}
}
],
"as": "temporaryShiftsLookup"
}
},
{
"$unwind": {
path: "$temporaryShiftsLookup",
preserveNullAndEmptyArrays: true
}
},
{
$project: {
shiftId: 1,
type: {
"$ifNull": [
"$temporaryShiftsLookup.type",
"permanent"
]
},
date: "$dateCursor"
}
}
])
Here is the Mongo Playground for your reference.

Related

MongoDB - Lookup match with condition array of object with string

I have two collections "datasets" and "users".
I tried to lookup datasets.assignedTo = users.id that's working fine. Also, I want to match the field of datasets.firstBillable >= users.prices.beginDate date field are matched to get the current index price value. And also check users.prices.endDate is less than or equal to users.prices.beginDate.
For example:
cgPrices: 45
https://mongoplayground.net/p/YQps9EozlAL
Collections:
db={
users: [
{
id: 1,
name: "Aravinth",
prices: [
{
beginDate: "2022-08-24T07:29:01.639Z",
endDate: "2022-08-31T07:29:01.639Z",
price: 45
}
]
},
{
id: 2,
name: "Raja",
prices: [
{
beginDate: "2022-07-25T07:29:01.639Z",
endDate: "2022-07-30T07:29:01.639Z",
price: 55
}
]
}
],
datasets: [
{
color: "braun, rose gold",
firstBillable: "2022-08-24T07:29:01.639Z",
assignedTo: 1
},
{
color: "beige, silber",
firstBillable: "2022-07-25T07:29:01.639Z",
assignedTo: 2
}
]
}
My current implementation:
db.datasets.aggregate([
{
"$lookup": {
"from": "users",
"as": "details",
let: {
assigned_to: "$assignedTo",
first_billable: "$firstBillable"
},
pipeline: [
{
"$match": {
$expr: {
"$and": [
{
"$eq": [
"$id",
"$$assigned_to"
]
},
{
"$gte": [
"$first_billable",
"$details.prices.beginDate"
]
},
{
"$lte": [
"$first_billable",
"$details.prices.endDate"
]
}
]
}
}
}
]
}
},
{
"$addFields": {
"details": 0,
"cg": {
$first: {
"$first": "$details.prices.price"
}
}
}
}
])
Output i needed:
[
{
"_id": ObjectId("5a934e000102030405000000"),
"assignedTo": 1,
"cg": 45,
"color": "braun, rose gold",
"details": 0,
"firstBillable": "2022-08-24T07:29:01.639Z"
},
{
"_id": ObjectId("5a934e000102030405000001"),
"assignedTo": 2,
"cg": 55,
"color": "beige, silber",
"details": 0,
"firstBillable": "2022-07-25T07:29:01.639Z"
}
]
https://mongoplayground.net/p/YQps9EozlAL
Concerns:
You should compare the date as Date instead of string, hence you are required to convert the date strings to Date before comparing.
In users collection, prices is an array. You need to deconstruct the array to multiple documents first before compare the date fields in price.
The query should be:
db.datasets.aggregate([
{
"$lookup": {
"from": "users",
"as": "details",
let: {
assigned_to: "$assignedTo",
first_billable: {
$toDate: "$firstBillable"
}
},
pipeline: [
{
$match: {
$expr: {
$eq: [
"$id",
"$$assigned_to"
]
}
}
},
{
$unwind: "$prices"
},
{
"$match": {
$expr: {
"$and": [
{
"$gte": [
"$$first_billable",
{
$toDate: "$prices.beginDate"
}
]
},
{
"$lte": [
"$$first_billable",
{
$toDate: "$prices.endDate"
}
]
}
]
}
}
}
]
}
},
{
"$addFields": {
"details": 0,
"cg": {
$first: "$details.prices.price"
}
}
}
])
Demo # Mongo Playground

find available rooms querying to bookings with aggregation

I have two collections, and i want to find available rooms between two dates 2021-10-01T00:00:00.000Z and 2021-10-31T23:59:59.999Z
bookings
{from:Date, to:Date, room:ObjectId, status:Boolean}
rooms
{_id:ObjectId, code:String, status:Boolean}
Any idea?
aggregate
db.bookings.aggregate([
{
"$match": {
"$and": [
{
"from": {
"$lt": "2021-10-16T23:59:59.999Z"
}
},
{
"to": {
"$gt": "2021-10-13T23:59:59.999Z"
}
}
],
"status": true
}
},
{
"$group": {
"_id": "1",
"notAvailableRooms": {
$addToSet: "$room"
}
}
},
{
"$lookup": {
from: "rooms",
let: {
ids: "$notAvailableRooms"
},
pipeline: [
{
$match: {
$expr: {
$and: [
{
$not: {
$in: [
"$_id",
"$$ids"
]
}
},
{
$eq: [
"$status",
true
]
}
]
}
}
}
],
as: "availableRooms"
}
},
{
"$project": {
"availableRooms": 1
}
}
])
mongoplayground

MongoDB compare endTime with startTime of next document

I have a similar collection where I have sort them by their startTime:
{"name": 'A', "startTime": '1634626355', "endTime": '1634631405'}
{"name": 'A', "startTime": '1634631406', "endTime": '1634631864'}
{"name": 'A', "startTime": '1634631865', "endTime": '1634656048'}
{"name": 'A', "startTime": '1634712642', "endTime": '1634718856'}
How can I compare the documents such that if the document endTime and the next document startTime duration is less than 5 minutes, merge it.
This is the result I'm trying to achieve (The 1st 3 documents are merged into 1 where it uses the startTime of the 1st document and the endTime of the 3rd document):
{"name": 'A', "startTime": '1634626355', "endTime": '1634656048'}
{"name": 'A', "startTime": '1634712642', "endTime": '1634718856'}
Thanks
First of all, you should never store date/time values as string, it's a design flaw. Store always proper Date object.
This solution works without self-lookup, so it may perform better:
db.collection.aggregate([
{
$set: {
startDateTime: { $toDate: { $multiply: ["$startTime", 1000] } },
endDateTime: { $toDate: { $multiply: ["$endTime", 1000] } }
},
},
{ $sort: { startDateTime: 1 } },
{ $group: { _id: null, data: { $push: "$$ROOT" } } },
{
$set: {
data: {
$reduce: {
input: "$data",
initialValue: [],
in: {
$cond: {
if: {
$or: [
{ $eq: [{ $size: "$$value" }, 0] }, // for the initail element
{
$gt: [
{
$dateDiff: { // calculate difference
endDate: "$$this.startDateTime",
startDate: { $last: "$$value.endDateTime" },
unit: "minute"
}
},
5 // more than 5 Minutes
]
}
]
},
then: { $concatArrays: ["$$value", ["$$this"]] }, // append new element
else: {
$map: {
input: "$$value",
as: "data",
in: {
$cond: {
if: { $eq: ["$$data._id", { $last: "$$value._id" }] }, // find last element
then: { // update last element
$mergeObjects: [
"$$data",
{ endDateTime: "$$this.endDateTime" },
{ endTime: "$$this.endTime" }
]
},
else: "$$data"
}
}
}
}
}
}
}
}
}
},
// some cosmetic
{ $unwind: "$data" },
{ $replaceRoot: { newRoot: "$data" } }
])
Mongo Playground
You can use $lookup in an aggregation pipeline to find out the documents that you need to remove. Then, perform a forEach to remove them.
db.collection.aggregate([
{
$addFields: {
endDateTime: {
"$toDate": {
"$multiply": [
{
$toLong: "$endTime"
},
1000
]
}
}
},
},
{
"$lookup": {
"from": "collection",
let: {
end: "$endDateTime"
},
pipeline: [
{
"$addFields": {
startDateTime: {
"$toDate": {
"$multiply": [
{
$toLong: "$startTime"
},
1000
]
}
}
}
},
{
$match: {
$expr: {
$and: [
{
$lte: [
{
$subtract: [
"$startDateTime",
"$$end"
]
},
300000
]
},
{
$lte: [
"$$end",
"$startDateTime"
]
}
]
}
}
}
],
"as": "lessThan5min"
}
},
{
"$unwind": "$lessThan5min"
},
{
"$replaceRoot": {
"newRoot": "$lessThan5min"
}
}
]).forEach(function(doc){
db.collection.remove({ "_id": doc._id });
});
Here is the Mongo playground to find out the documents that you need to remove for your reference.

want to convert "00:10:00" to a single integer in mongodb

There are many documents in the collection which contains this field timeTaken: "00:10:00",
I want to sum up from all the documents and have to give a single integer in mongodb robo3T.
That is for the following documents:
[
{ timeTaken: "00:10:00" },
{ timeTaken: "01:10:00" },
{ timeTaken: "02:20:50" }
]
I want the result to be:
{ timeTaken: "03:40:50" }
Our strategy will be to split the string into minutes, seconds and hours, convert them to numbers, sum them up and then reconstruct the structure.
For this you will need access to operators like $toString and $toInt which means you can only do this for version 4.0+, for older Mongo versions you will have to read the documents and do this in code.
I've split the following query into multiple stages so it's clearer what I'm doing but this could be re-written into just 2 stages, the $group stage and a final $project stage to restructure the data.
db.collection.aggregate([
{
"$addFields": {
dataParts: {
$map: {
input: {
$split: [
"$data",
":"
]
},
as: "num",
in: {
"$toInt": "$$num"
}
}
},
}
},
{
$group: {
_id: null,
seconds: {
$sum: {
"$arrayElemAt": [
"$dataParts",
2
]
}
},
minutes: {
$sum: {
"$arrayElemAt": [
"$dataParts",
1
]
}
},
hours: {
$sum: {
"$arrayElemAt": [
"$dataParts",
0
]
}
},
}
},
{
"$addFields": {
finalSeconds: {
$mod: [
"$seconds",
60
]
},
}
},
{
$addFields: {
minutes: {
$sum: [
"$minutes",
{
"$divide": [
{
"$subtract": [
"$seconds",
"$finalSeconds"
]
},
60
]
}
]
},
}
},
{
$addFields: {
finalMinutes: {
$mod: [
"$minutes",
60
]
},
finalHours: {
$sum: [
"$hours",
{
$mod: [
{
$max: [
{
"$subtract": [
"$minutes",
60
]
},
0
]
},
60
]
}
]
}
}
},
{
$project: {
final: {
$concat: [
{
"$toString": "$finalHours"
},
":",
{
"$toString": "$finalMinutes"
},
":",
{
"$toString": "$finalSeconds"
},
]
}
}
}
])
Mongo Playground

how to use $groupby and transform distinct value mongodb

How to transform the data using $if $else groupby condition MongoDB?
This playground should return two object who belongs to text with "tester 2" and "tester 3" also if I have multiple object in history collection it should also check with last object not will all object how it is possible
So condition should say if history's date is $gt then main collection should return nothing else return the matched criteria data.
db.main.aggregate([
{
$lookup: {
from: "history",
localField: "history_id",
foreignField: "history_id",
as: "History"
}
},
{
$unwind: "$History"
},
{
"$match": {
$expr: {
$cond: {
if: {
$eq: [
"5e4e74eb380054797d9db623",
"$History.user_id"
]
},
then: {
$and: [
{
$gt: [
"$date",
"$History.date"
]
},
{
$eq: [
"5e4e74eb380054797d9db623",
"$History.user_id"
]
}
]
},
else: {}
}
}
}
}
])
MongoPlayground
If I understand you correctly, it is what you are trying to do:
db.main.aggregate([
{
$lookup: {
from: "history",
let: {
main_history_id: "$history_id",
main_user_id: { $toString: "$sender_id" }
},
pipeline: [
{
$match: {
$expr: {
$and: [
{
$eq: [
"$history_id",
"$$main_history_id"
]
},
{
$eq: [
"$user_id",
"$$main_user_id"
]
}
]
}
}
}
],
as: "History"
}
},
{
$unwind: {
path: "$History",
preserveNullAndEmptyArrays: true
}
},
{
$sort: {
_id: 1,
"History.history_id": 1,
"History.date": 1
}
},
{
$group: {
_id: "$_id",
data: { $last: "$$ROOT" },
History: { $last: "$History" }
}
},
{
$replaceRoot: {
newRoot: {
$mergeObjects: [
"$data",
{ History: "$History" }
]
}
}
},
{
"$match": {
$expr: {
$or: [
{
$eq: [
{ $type: "$History.date" },
"missing"
]
},
{
$ne: [
"5e4e74eb380054797d9db623",
"$History.user_id"
]
},
{
$and: [
{
$eq: [
"5e4e74eb380054797d9db623",
"$History.user_id"
]
},
{
$gte: [
"$date",
"$History.date"
]
}
]
}
]
}
}
}
])
MongoPlayground