I have a data frame that looks something along the lines of:
+-----+-----+------+-----+
|col1 |col2 |col3 |col4 |
+-----+-----+------+-----+
|1.1 |2.3 |10.0 |1 |
|2.2 |1.5 |5.0 |1 |
|3.3 |1.3 |1.5 |1 |
|4.4 |0.5 |7.0 |1 |
|5.5 |1.2 |8.1 |2 |
|6.6 |2.3 |8.2 |2 |
|7.7 |4.5 |10.3 |2 |
+-----+-----+------+-----+
I would like to subtract each row from the row above but only if they have the same entry in col4, so 2-1, 3-2 but not 5-4. Also col4 should not be changed, so the result would be
+-----+-----+------+------+
|col1 |col2 |col3 |col4 |
+-----+-----+------+------+
|1.1 |-0.8 |-5.0 |1 |
|1.1 |-0.2 |-3.5 |1 |
|1.1 |-0.8 |5.5 |1 |
|1.1 |1.1 |0.1 |2 |
|1.1 |2.2 |2.1 |2 |
+-----+-----+------+------+
This sounds like it'd be simple, but I can't seem to figure it out
You could accomplish this using spark-sql i.e. creating a temporary view with your dataframe and applying the following sql. It uses window functions LAG to subtract the previous row value ordered by col1 and partitioned by col4. The first row value in each group partitioned by col4 is identified using row_number and filtered.
df.createOrReplaceTempView('my_temp_view')
results = sparkSession.sql('<insert sql below here>')
SELECT
col1,
col2,
col3,
col4
FROM (
SELECT
(col1 - (LAG(col1,1,0) OVER (PARTITION BY col4 ORDER BY col1) )) as col1,
(col2 - (LAG(col2,1,0) OVER (PARTITION BY col4 ORDER BY col1) )) as col2,
(col3 - (LAG(col3,1,0) OVER (PARTITION BY col4 ORDER BY col1) )) as col3,
col4,
ROW_NUMBER() OVER (PARTITION BY col4 ORDER BY col1) rn
FROM
my_temp_view
) t
WHERE rn <> 1
db-fiddle
Here just the idea with a self-JOIN based on RDD with zipWithIndex and back to DF - some overhead, that you can tailor, z being your col4.
At scale I am not sure about the performance that Catalyst Optimizer will apply, I looked at .explain(true); not convinced entirely, but I find it hard to interpret the output sometimes. Ordering of data is guaranteed.
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{StructField,StructType,IntegerType, ArrayType, LongType}
val df = sc.parallelize(Seq( (1.0, 2.0, 1), (0.0, -1.0, 1), (3.0, 4.0, 1), (6.0, -2.3, 4))).toDF("x", "y", "z")
val newSchema = StructType(df.schema.fields ++ Array(StructField("rowid", LongType, false)))
val rddWithId = df.rdd.zipWithIndex
val dfZippedWithId = spark.createDataFrame(rddWithId.map{ case (row, index) => Row.fromSeq(row.toSeq ++ Array(index))}, newSchema)
dfZippedWithId.show(false)
dfZippedWithId.printSchema()
val res = dfZippedWithId.as("dfZ1").join(dfZippedWithId.as("dfZ2"), $"dfZ1.z" === $"dfZ2.z" &&
$"dfZ1.rowid" === $"dfZ2.rowid" -1
,"inner")
.withColumn("newx", $"dfZ2.x" - $"dfZ1.x")//.explain(true)
res.show(false)
returns the input:
+---+----+---+-----+
|x |y |z |rowid|
+---+----+---+-----+
|1.0|2.0 |1 |0 |
|0.0|-1.0|1 |1 |
|3.0|4.0 |1 |2 |
|6.0|-2.3|4 |3 |
+---+----+---+-----+
and the result which you can tailor by selecting and adding extra calculations:
+---+----+---+-----+---+----+---+-----+----+
|x |y |z |rowid|x |y |z |rowid|newx|
+---+----+---+-----+---+----+---+-----+----+
|1.0|2.0 |1 |0 |0.0|-1.0|1 |1 |-1.0|
|0.0|-1.0|1 |1 |3.0|4.0 |1 |2 |3.0 |
+---+----+---+-----+---+----+---+-----+----+
Related
I have the following working solution in a databricks notebook as test.
var maxcol = udf((col1: Long, col2: Long, col3: Long) => {
var res = ""
if (col1 > col2 && col1 > col3) res = "col1"
else if (col2 > col1 && col2 > col3) res = "col2"
else res = "col3"
res
})
val someDF = Seq(
(8, 10, 12, "bat"),
(64, 61, 59, "mouse"),
(-27, -30, -15, "horse")
).toDF("number1", "number2", "number3", "word")
.withColumn("maxColVal", greatest("number1", "number2", "number3"))
.withColumn("maxColVal_Name", maxcol(col("number1"), col("number2"), col("number3")))
display(someDF)
Is there any way to make this generic? I have a usecase to make variable columns pass to this UDF and still get the max column name as output corresponding to the column having max value.
Unlike above where I have hard coded the column names 'col1', 'col2' and 'col3' in the UDF.
Use below:
val df = List((1,2,3,5,"a"),(4,2,3,1,"a"),(1,20,3,1,"a"),(1,22,22,2,"a")).toDF("mycol1","mycol2","mycol3","mycol4","mycol5")
//list all your columns among which you want to find the max value
val colGroup = List(df("mycol1"),df("mycol2"),df("mycol3"),df("mycol4"))
//list column value -> column name of the columns among which you want to find max value column NAME
val colGroupMap = List(df("mycol1"),lit("mycol1"),
df("mycol2"),lit("mycol2"),
df("mycol3"),lit("mycol3"),
df("mycol4"),lit("mycol4"))
var maxcol = udf((colVal: Map[Int,String]) => {
colVal.max._2 //you can easily find the column name of the max column value
})
df.withColumn("maxColValue",greatest(colGroup:_*)).withColumn("maxColVal_Name",maxcol(map(colGroupMap:_*))).show(false)
+------+------+------+------+------+-----------+--------------+
|mycol1|mycol2|mycol3|mycol4|mycol5|maxColValue|maxColVal_Name|
+------+------+------+------+------+-----------+--------------+
|1 |2 |3 |5 |a |5 |mycol4 |
|4 |2 |3 |1 |a |4 |mycol1 |
|1 |20 |3 |1 |a |20 |mycol2 |
|1 |22 |22 |2 |a |22 |mycol3 |
+------+------+------+------+------+-----------+--------------+
The below code gives a count vector for each row in the DataFrame:
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel}
val df = spark.createDataFrame(Seq(
(0, Array("a", "b", "c")),
(1, Array("a", "b", "b", "c", "a"))
)).toDF("id", "words")
// fit a CountVectorizerModel from the corpus
val cvModel: CountVectorizerModel = new CountVectorizer()
.setInputCol("words")
.setOutputCol("features")
.fit(df)
cvModel.transform(df).show(false)
The result is:
+---+---------------+-------------------------+
|id |words |features |
+---+---------------+-------------------------+
|0 |[a, b, c] |(3,[0,1,2],[1.0,1.0,1.0])|
|1 |[a, b, b, c, a]|(3,[0,1,2],[2.0,2.0,1.0])|
+---+---------------+-------------------------+
How to get total counts of each words, like:
+---+------+------+
|id |words |counts|
+---+------+------+
|0 |a | 3 |
|1 |b | 3 |
|2 |c | 2 |
+---+------+------+
Shankar's answer only gives you the actual frequencies if the CountVectorizer model keeps every single word in the corpus (e.g. no minDF or VocabSize limitations). In these cases you can use Summarizer to directly sum each Vector. Note: this requires Spark 2.3+ for Summarizer.
import org.apache.spark.ml.stat.Summarizer.metrics
// You need to select normL1 and another item (like mean) because, for some reason, Spark
// won't allow one Vector to be selected at a time (at least in 2.4)
val totalCounts = cvModel.transform(df)
.select(metrics("normL1", "mean").summary($"features").as("summary"))
.select("summary.normL1", "summary.mean")
.as[(Vector, Vector)]
.first()
._1
You'll then have to zip totalCounts with cvModel.vocabulary to get the words themselves.
You can simply explode and groupBy to get the count of each word
cvModel.transform(df).withColumn("words", explode($"words"))
.groupBy($"words")
.agg(count($"words").as("counts"))
.withColumn("id", row_number().over(Window.orderBy("words")) -1)
.show(false)
Output:
+-----+------+---+
|words|counts|id |
+-----+------+---+
|a |3 |1 |
|b |3 |2 |
|c |2 |3 |
+-----+------+---+
My spark dataframe looks like this:
+------+------+-------+------+
|userid|useid1|userid2|score |
+------+------+-------+------+
|23 |null |dsad |3 |
|11 |44 |null |4 |
|231 |null |temp |5 |
|231 |null |temp |2 |
+------+------+-------+------+
I want to do the calculation for each pair of userid and useid1/userid2 (whichever is not null).
And if it's useid1, I multiply the score by 5, if it's userid2, I multiply the score by 3.
Finally, I want to add all score for each pair.
The result should be:
+------+--------+-----------+
|userid|useid1/2|final score|
+------+--------+-----------+
|23 |dsad |9 |
|11 |44 |20 |
|231 |temp |21 |
+------+------+-------------+
How can I do this?
For the groupBy part, I know dataframe has the groupBy function, but I don't know if I can use it conditionally, like if userid1 is null, groupby(userid, userid2), if userid2 is null, groupby(userid, useid1).
For the calculation part, how to multiply 3 or 5 based on the condition?
The below solution will help to solve your problem.
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
val groupByUserWinFun = Window.partitionBy("userid","useid1/2")
val finalScoreDF = userDF.withColumn("useid1/2", when($"userid1".isNull, $"userid2").otherwise($"userid1"))
.withColumn("finalscore", when($"userid1".isNull, $"score" * 3).otherwise($"score" * 5))
.withColumn("finalscore", sum("finalscore").over(groupByUserWinFun))
.select("userid", "useid1/2", "finalscore").distinct()
using when method in spark SQL, select userid1 or 2 and multiply with values based on the condition
Output:
+------+--------+----------+
|userid|useid1/2|finalscore|
+------+--------+----------+
| 11 | 44| 20.0|
| 23 | dsad| 9.0|
| 231| temp| 21.0|
+------+--------+----------+
Group by will work:
val original = Seq(
(23, null, "dsad", 3),
(11, "44", null, 4),
(231, null, "temp", 5),
(231, null, "temp", 2)
).toDF("userid", "useid1", "userid2", "score")
// action
val result = original
.withColumn("useid1/2", coalesce($"useid1", $"userid2"))
.withColumn("score", $"score" * when($"useid1".isNotNull, 5).otherwise(3))
.groupBy("userid", "useid1/2")
.agg(sum("score").alias("final score"))
result.show(false)
Output:
+------+--------+-----------+
|userid|useid1/2|final score|
+------+--------+-----------+
|23 |dsad |9 |
|231 |temp |21 |
|11 |44 |20 |
+------+--------+-----------+
coalesce will do the needful.
df.withColumn("userid1/2", coalesce(col("useid1"), col("useid1")))
basically this function return first non-null value of the order
documentation :
COALESCE(T v1, T v2, ...)
Returns the first v that is not NULL, or NULL if all v's are NULL.
needs an import import org.apache.spark.sql.functions.coalesce
In spark, I would like to count how values are less or equal to other values. I tried to accomplish this via ranking but rank produces
[1,2,2,2,3,4] -> [1,2,2,2,5,6]
while what I would like is
[1,2,2,2,3,4] -> [1,4,4,4,5,6]
I can accomplish this by ranking, grouping by the rank and then modifying the rank value based on how many items are in the group. But this is kind of clunky and it's inefficient. Is there a better way to do this?
Edit: Added minimal example of what I'm trying to accomplish
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.rank
import org.apache.spark.sql.expressions.Window
object Question extends App {
val spark = SparkSession.builder.appName("Question").master("local[*]").getOrCreate()
import spark.implicits._
val win = Window.orderBy($"nums".asc)
Seq(1, 2, 2, 2, 3, 4)
.toDF("nums")
.select($"nums", rank.over(win).alias("rank"))
.as[(Int, Int)]
.groupByKey(_._2)
.mapGroups((rank, nums) => (rank, nums.toList.map(_._1)))
.map(x => (x._1 + x._2.length - 1, x._2))
.flatMap(x => x._2.map(num => (num, x._1)))
.toDF("nums", "rank")
.show(false)
}
Output:
+----+----+
|nums|rank|
+----+----+
|1 |1 |
|2 |4 |
|2 |4 |
|2 |4 |
|3 |5 |
|4 |6 |
+----+----+
Use window functions
scala> val df = Seq(1, 2, 2, 2, 3, 4).toDF("nums")
df: org.apache.spark.sql.DataFrame = [nums: int]
scala> df.createOrReplaceTempView("tbl")
scala> spark.sql(" with tab1(select nums, rank() over(order by nums) rk, count(*) over(partition by nums) cn from tbl) select nums, rk+cn-1 as rk2 from tab1 ").show(false)
18/11/28 02:20:55 WARN WindowExec: No Partition Defined for Window operation! Moving all data to a single partition, this can cause serious performance degradation.
+----+---+
|nums|rk2|
+----+---+
|1 |1 |
|2 |4 |
|2 |4 |
|2 |4 |
|3 |5 |
|4 |6 |
+----+---+
scala>
Note that the df doesn't partition on any column, so spark complains of moving all data to single partition.
EDIT1:
scala> spark.sql(" select nums, rank() over(order by nums) + count(*) over(partition by nums) -1 as rk2 from tbl ").show
18/11/28 23:20:09 WARN WindowExec: No Partition Defined for Window operation! Moving all data to a single partition, this can cause serious performance degradation.
+----+---+
|nums|rk2|
+----+---+
| 1| 1|
| 2| 4|
| 2| 4|
| 2| 4|
| 3| 5|
| 4| 6|
+----+---+
scala>
EDIT2:
The equivalent df version
scala> val df = Seq(1, 2, 2, 2, 3, 4).toDF("nums")
df: org.apache.spark.sql.DataFrame = [nums: int]
scala> import org.apache.spark.sql.expressions._
import org.apache.spark.sql.expressions._
scala> df.withColumn("rk2", rank().over(Window orderBy 'nums)+ count(lit(1)).over(Window.partitionBy('nums)) - 1 ).show(false)
2018-12-01 11:10:26 WARN WindowExec:66 - No Partition Defined for Window operation! Moving all data to a single partition, this can cause serious performance degradation.
+----+---+
|nums|rk2|
+----+---+
|1 |1 |
|2 |4 |
|2 |4 |
|2 |4 |
|3 |5 |
|4 |6 |
+----+---+
scala>
So, a friend pointed out that if I just calculate the rank in descending order and then for each rank do (max_rank + 1) - current_rank. This is a much more efficient implementation.
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.rank
import org.apache.spark.sql.expressions.Window
object Question extends App {
val spark = SparkSession.builder.appName("Question").master("local[*]").getOrCreate()
import spark.implicits._
val win = Window.orderBy($"nums".desc)
val rankings = Seq(1, 2, 2, 2, 3, 4)
.toDF("nums")
.select($"nums", rank.over(win).alias("rank"))
.as[(Int, Int)]
val maxElement = rankings.select("rank").as[Int].reduce((a, b) => if (a > b) a else b)
rankings
.map(x => x.copy(_2 = maxElement - x._2 + 1))
.toDF("nums", "rank")
.orderBy("rank")
.show(false)
}
Output
+----+----+
|nums|rank|
+----+----+
|1 |1 |
|2 |4 |
|2 |4 |
|2 |4 |
|3 |5 |
|4 |6 |
+----+----+
Supposed i have two dataset as following:
Dataset 1:
id, name, score
1, Bill, 200
2, Bew, 23
3, Amy, 44
4, Ramond, 68
Dataset 2:
id,message
1, i love Bill
2, i hate Bill
3, Bew go go !
4, Amy is the best
5, Ramond is the wrost
6, Bill go go
7, Bill i love ya
8, Ramond is Bad
9, Amy is great
I wanted to join above two datasets and counting the top number of person's name that appears in dataset2 according to the name in dataset1 the result should be:
Bill, 4
Ramond, 2
..
..
I managed to join both of them together but not sure how to count how many time it appear for each person.
Any suggestion would be appreciated.
Edited:
my join code:
val rdd = sc.textFile("dataset1")
val rdd2 = sc.textFile("dataset2")
val rddPair1 = rdd.map { x =>
var data = x.split(",")
new Tuple2(data(0), data(1))
}
val rddPair2 = rdd2.map { x =>
var data = x.split(",")
new Tuple2(data(0), data(1))
}
rddPair1.join(rddPair2).collect().foreach(f =>{
println(f._1+" "+f._2._1+" "+f._2._2)
})
Using RDDs, achieving the solution you desire, would be complex. Not so much using dataframes.
First step would be to read the two files you have into dataframes as below
val df1 = sqlContext.read.format("com.databricks.spark.csv")
.option("header", true)
.load("dataset1")
val df2 = sqlContext.read.format("com.databricks.spark.csv")
.option("header", true)
.load("dataset1")
so that you should be having
df1
+---+------+-----+
|id |name |score|
+---+------+-----+
|1 |Bill |200 |
|2 |Bew |23 |
|3 |Amy |44 |
|4 |Ramond|68 |
+---+------+-----+
df2
+---+-------------------+
|id |message |
+---+-------------------+
|1 |i love Bill |
|2 |i hate Bill |
|3 |Bew go go ! |
|4 |Amy is the best |
|5 |Ramond is the wrost|
|6 |Bill go go |
|7 |Bill i love ya |
|8 |Ramond is Bad |
|9 |Amy is great |
+---+-------------------+
join, groupBy and count should give your desired output as
df1.join(df2, df2("message").contains(df1("name")), "left").groupBy("name").count().as("count").show(false)
Final output would be
+------+-----+
|name |count|
+------+-----+
|Ramond|2 |
|Bill |4 |
|Amy |2 |
|Bew |1 |
+------+-----+