I'm trying to get mass elevation data from tiff image, I have a csv file. csv file contents latitude, longitude and other attributes also. Looping through csv file and getting latitude and longitude and calling elevation method, Code given below. Reference RasterFrames extracting location information problem
package main.scala.sample
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.locationtech.rasterframes._
import org.locationtech.rasterframes.datasource.raster._
import org.locationtech.rasterframes.encoders.CatalystSerializer._
import geotrellis.raster._
import geotrellis.vector.Extent
import org.locationtech.jts.geom.Point
import org.apache.spark.sql.functions.col
object SparkSQLExample {
def main(args: Array[String]) {
implicit val spark = SparkSession.builder()
.master("local[*]").appName("RasterFrames")
.withKryoSerialization.getOrCreate().withRasterFrames
spark.sparkContext.setLogLevel("ERROR")
import spark.implicits._
val example = "https://raw.githubusercontent.com/locationtech/rasterframes/develop/core/src/test/resources/LC08_B7_Memphis_COG.tiff"
val rf = spark.read.raster.from(example).load()
val rf_value_at_point = udf((extentEnc: Row, tile: Tile, point: Point) => {
val extent = extentEnc.to[Extent]
Raster(tile, extent).getDoubleValueAtPoint(point)
})
val spark_file:SparkSession = SparkSession.builder()
.master("local[1]")
.appName("SparkByExamples")
.getOrCreate()
spark_file.sparkContext.setLogLevel("ERROR")
println("spark read csv files from a directory into RDD")
val rddFromFile = spark_file.sparkContext.textFile("point.csv")
println(rddFromFile.getClass)
def customF(str: String): String = {
val lat = str.split('|')(2).toDouble;
val long = str.split('|')(3).toDouble;
val point = st_makePoint(long, lat)
val test = rf.where(st_intersects(rf_geometry(col("proj_raster")), point))
.select(rf_value_at_point(rf_extent(col("proj_raster")), rf_tile(col("proj_raster")), point) as "value")
return test.toString()
}
val rdd2=rddFromFile.map(f=> customF(f))
rdd2.foreach(t=>println(t))
spark.stop()
}
}
when I'm running getting null pointer exception, any help appreciated
java.lang.NullPointerException
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:182)
at org.apache.spark.sql.Dataset$.apply(Dataset.scala:64)
at org.apache.spark.sql.Dataset.withTypedPlan(Dataset.scala:3416)
at org.apache.spark.sql.Dataset.filter(Dataset.scala:1490)
at org.apache.spark.sql.Dataset.where(Dataset.scala:1518)
at main.scala.sample.SparkSQLExample$.main$scala$sample$SparkSQLExample$$customF$1(SparkSQLExample.scala:49)
The function which is being mapped over the RDD (customF) is not null safe. Try calling customF(null) and see what happens. If it throws an exception, then you will have to make sure that rddFromFile doesn't contain any null/missing values.
It is a little hard to tell if that is exactly where issue is. I think the stack trace of the exception is less helpful than usual because the function is being run in a spark tasks on the workers.
If that is the issue, you could rewrite customF to handle the case where str is null or change the parameter type to Option[String] (and tweak the logic accordingly).
By the way, the same thing allies for UDFs. They need to either
Accept Option types as input
Handle the case where each arg is null or
Only be applied to data with no missing values.
Related
I've been having an issue with a long, complicated spark job which contains a udf.
The issue I've been having is that the udf doesn't seem to get called properly, although there is no error message.
I know it isn't called properly because the output gets written, only anything the udf was supposed to calculate is NULL, and no print statements appear when debugging locally.
The only lead is that this code previously worked using different input data, meaning the error must have something to do with the input.
The change in inputs mostly means different column names are used, which is addressed in the code.
Print statements are executed given the first, 'working' input.
Both inputs are created using the same series of steps from the same database, and by inspection there doesn't appear to be a problem with either one.
I've never experienced this sort of behaviour before, and any leads on what might cause it would be appreciated.
The code is monolithic and inflexible - I'm working on refactoring, but it's not an easy piece to break apart. This is a short version of what is happening:
package mypackage
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.util._
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.sql.types._
import scala.collection.{Map => SMap}
object MyObject {
def main(args: Array[String]){
val spark: SparkSession = SparkSession.builder()
.appName("my app")
.config("spark.master", "local")
.getOrCreate()
import spark.implicits._
val bigInput = spark.read.parquet("inputname.parquet")
val reference_table = spark.read.parquet("reference_table.parquet")
val exchange_rate = spark.read.parquet("reference_table.parquet")
val bigInput2 = bigInput
.filter($"column1" === "condition1")
.join(joinargs)
.drop(dropargs)
val bigInput3 = bigInput
.filter($"column2" === "condition2")
.join(joinargs)
.drop(dropargs)
<continue for many lines...>
def mapper1(
arg1: String,
arg2: Double,
arg3: Integer
): List[Double]{
exchange_rate.map(
List(idx1, idx2, idx3),
r.toSeq.toList
.drop(idx4)
.take(arg2)
)
}
def mapper2(){}
...
def mapper5(){}
def my_udf(
arg0: Integer,
arg1: String,
arg2: Double,
arg3: Integer,
...
arg20: String
): Double = {
println("I'm actually doing something!")
val result1 = mapper1(arg1, arg2, arg3)
val result2 = mapper2(arg4, arg5, arg6, arg7)
...
val result5 = mapper5(arg18, arg19, arg20)
result1.take(arg0)
.zipAll(result1, 0.0, 0.0)
.map(x=>_1*x._2)
....
.zipAll(result5, 0.0, 0.0)
.foldLeft(0.0)(_+_)
}
spark.udf.register("myUDF", my_udf_)
val bigResult1 = bigInputFinal.withColumn("Newcolumnname",
callUDF(
"myUDF",
$"col1",
...
$"col20"
)
)
<postprocessing>
bigResultFinal
.filter(<configs>)
.select(<column names>)
.write
.format("parquet")
}
}
To recap
This code runs to completion on each of two input files.
The udf only appears to execute on the first file.
There are no error messages or anything using the second file, although all non-udf logic appears to complete successfully.
Any help greatly appreciated!
Here the UDF is not being called because spark is
Lazy it does not call the UDF unless you use any action on the dataframe. You can achieve this by forcing dataframe actions.
I am a newbie in scala. Please be patient.
I have this code.
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.ml.evaluation._
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.evaluation.ClusteringEvaluator
// create spark session
implicit val spark = SparkSession.builder().appName("clustering").getOrCreate()
// read file
val fileName = """file:///some_location/head_sessions_sample.csv"""
// create DF from file
val df = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load(fileName)
def inputKmeans(df: DataFrame,spark: SparkSession): DataFrame = {
try {
val a = df.select("id", "start_ts", "duration", "ip_dist").map(r => (r.getInt(0), Vectors.dense(r.getDouble(1), r.getDouble(2), r.getDouble(3)))).toDF("id", "features")
a
}
catch {
case e: java.lang.ClassCastException => spark.emptyDataFrame
}
}
val t = inputKmeans(df).filter( _ != null )
t.foreach(r =>
if (r.get(0) != null)
println(r.get(0)))
For the moment, i want to ignore my conversion errors. But somehow, I still have them.
2018-09-24 11:26:22 ERROR Executor:91 - Exception in task 0.0 in stage
4.0 (TID 6) java.lang.ClassCastException: java.lang.Long cannot be cast to java.lang.Double
I dont think there is any point to give a snapshot of the csv. At this point, i just want to ignore conversion errors.
Any ideas why this is happening?
As mentioned in the comment, the issue is because the values are not Double type.
val a = df.select("id", "start_ts", "duration", "ip_dist").map(r => (r.getInt(0), Vectors.dense(r.getDouble(1), r.getDouble(2), r.getDouble(3)))).toDF("id", "features")
Either cast to the Correct DataType i.e Long Type (you can also provide the Schema explicitly using Case Class and apply the schema to DataFrame).
Or use the VectorAssembler to convert the columns into features. This is easier and recommended approach.
import org.apache.spark.ml.feature.VectorAssembler
def inputKmeans(df: DataFrame,spark: SparkSession): DataFrame = {
val assembler = new VectorAssembler().setInputCols(Array("start_ts", "duration", "ip_dist")).setOutputCol("features")
val output = assembler.transform(df).select("id", "features")
output
}
i think i discovered the problem. the "try catch" is placed at the level of the DF creation, not at the level of the conversion. in consequence, it catches problems related to DF creation, not conversion issues.
Using Spark 1.6.1 I want to call the number of times a UDF is called. I want to do this because I have a very expensive UDF (~1sec per call) and I suspect the UDF being called more often than the number of records in my dataframe, making my spark job slower than necessary.
Although I could not reproduce this situation, I came up with a simple example showing that the number of calls to the UDF seems to be different (here: less) than the number of rows, how can that be?
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.functions.udf
object Demo extends App {
val conf = new SparkConf().setMaster("local[4]").setAppName("Demo")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
val callCounter = sc.accumulator(0)
val df= sc.parallelize(1 to 10000,numSlices = 100).toDF("value")
println(df.count) // gives 10000
val myudf = udf((d:Int) => {callCounter.add(1);d})
val res = df.withColumn("result",myudf($"value")).cache
println(res.select($"result").collect().size) // gives 10000
println(callCounter.value) // gives 9941
}
If using an accumulator is not the right way to call the counts of the UDF, how else could I do it?
Note: In my actual Spark-Job, get a call-count which is about 1.7 times higher than the actual number of records.
Spark applications should define a main() method instead of extending scala.App. Subclasses of scala.App may not work correctly.
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.functions.udf
object Demo extends App {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Simple Application").setMaster("local[4]")
val sc = new SparkContext(conf)
// [...]
}
}
This should solve your problem.
i've copied a working example of and i've changed it a little, but the core is always the same, but i got always this error in the StructField point:
cannot resolve reference StructField with such signature
And also gives me this one, inside the signature:
Type mismatch, expected: Datatype, actual StringType
Here is the part of my code where i got problems:
import org.apache.avro.generic.GenericData.StringType
import org.apache.spark
import org.apache.spark.sql.types.StructField
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.types._
object Test{
def main(args: Array[String]): Unit = {
val file = "/home/ubuntu/spark/MyFile"
val conf = new SparkConf().setAppName("Test")
val sc = new SparkContext(conf)
val read = sc.textFile(file)
val header = read.first().toString
//generate schema from first csv row
val fields = header.split(";").map(fieldName => StructField(fieldName.trim, StringType, true))
val schema = StructType(fields)
}
}
I cannot understand where i'm wrong.
I'm using Spark version 2.0.0
Thanks
It looks like GenericData.StringType is an issue. Use an alias:
import org.apache.avro.generic.GenericData.{StringType => AvroStringType}
or remove this import (you don't use it).
I am a newbie with Apache spark as well with Scala programming language.
What I am trying to achieve is to extract the data from my local mongoDB database for then to save it in a parquet format using Apache Spark with the hadoop-connector
This is my code so far:
package com.examples
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.rdd.RDD
import org.apache.hadoop.conf.Configuration
import org.bson.BSONObject
import com.mongodb.hadoop.{MongoInputFormat, BSONFileInputFormat}
import org.apache.spark.sql
import org.apache.spark.sql.SQLContext
object DataMigrator {
def main(args: Array[String])
{
val conf = new SparkConf().setAppName("Migration App").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// Import statement to implicitly convert an RDD to a DataFrame
import sqlContext.implicits._
val mongoConfig = new Configuration()
mongoConfig.set("mongo.input.uri", "mongodb://localhost:27017/mongosails4.case")
val mongoRDD = sc.newAPIHadoopRDD(mongoConfig, classOf[MongoInputFormat], classOf[Object], classOf[BSONObject]);
val count = countsRDD.count()
// the count value is aprox 100,000
println("================ PRINTING =====================")
println(s"ROW COUNT IS $count")
println("================ PRINTING =====================")
}
}
The thing is that in order to save data to a parquet file format first its necessary to convert the mongoRDD variable to Spark DataFrame. I have tried something like this:
// convert RDD to DataFrame
val myDf = mongoRDD.toDF() // this lines throws an error
myDF.write.save("my/path/myData.parquet")
and the error I get is this:
Exception in thread "main" scala.MatchError: java.lang.Object (of class scala.reflect.internal.Types.$TypeRef$$anon$6)
do you guys have any other idea how could I convert the RDD to a DataFrame so that I can save data in parquet format?
Here's the structure of one Document in the mongoDB collection : https://gist.github.com/kingtrocko/83a94238304c2d654fe4
Create a Case class representing the data stored in your DBObject.
case class Data(x: Int, s: String)
Then, map the values of your rdd to instances of your case class.
val dataRDD = mongoRDD.values.map { obj => Data(obj.get("x"), obj.get("s")) }
Now with your RDD[Data], you can create a DataFrame with the sqlContext
val myDF = sqlContext.createDataFrame(dataRDD)
That should get you going. I can explain more later if needed.