ObjectBox Dart/Flutter multi-isolate access - flutter

Creating a separate thread for a question stated in a comment...
How does ObjectBox handle concurrent(by different threads/isolates) write requests? example of my use case: FCM "onBackgroundmessage" call runs in a different isolate, the same time multiple write requests might happen. "Hive" is failing in this case completely. Is there any inbuild solution in ObjectBox?

ObjectBox for dart is based on a native ObjectBox core library that handles concurrency using Transactions. Let me pick out few points relevant to the question:
Transactions manage multi-threading; e.g. a transaction is tied to a thread and vice versa.
Read(-only) transactions never get blocked or block a write transaction.
There can only be a single write transaction at any time; they run strictly one after the other (sequential).
As for the isolates in Dart/Flutter - yes, they can safely access the same store, you just need to make sure it really is the same native store instance. To do so, you do the following steps:
Create a Store() instance in your main isolate, as you normally would.
Get ByteData store.reference which contains the information about the native store.
Send this reference to another isolate, via a SendPort.
In another isolate, receive the reference and open a local Store instance, using Store.fromReference(getObjectBoxModel(), msg as ByteData).
Now both isolates have their own Dart Store instances which internally use the same underlying native store. Therefore, their transactions are synchronized, they both see the same data and get notifications on data changes. 🎉
You can see the code I've just described this test case: https://github.com/objectbox/objectbox-dart/blob/461a948439dcc42f3956b7d21b232eb9c2bc26e1/objectbox/test/isolates_test.dart#L50
Make sure you don't close the store while another isolate is still using it. Better not close it at all - that's best practice in normal applications without huge amounts of background work.

Related

Flutter SIP call from background service

I'm making a Flutter SIP call application using dart-sip-ua https://github.com/flutter-webrtc/dart-sip-ua.
I need to use PUSH messages to wake up the application and set the call.
I was able to wake up the application, but how to connect with the current call?
According to the documentation, when making a call, a Call object is created and it has an answer() method.
But when the Call object wakes up, we do not have, respectively, the answer() method either.
I tried to find a solution using SIPUAHelper.findCall(callUUID), but without success: callUUID is generated when the call is initialized, and we do not know it in advance to pass it via PUSH.
That is, I show my CallScreen, but I don’t have a Call object...
Is there really only one option? Wait until the SIP connects itself? It could be 5, 10, 30 seconds...
Help me please. What is the approach to accomplish this task? I feel that my approach is not correct.
Thank you!
One possible solution to your problem could be to store the Call object in a persistent storage, such as a database or a file, whenever it is created. Then, when the application wakes up and receives the PUSH message, you can retrieve the Call object from the storage and pass it to the CallScreen. To do this, you can use a database library like "sqflite" or a file library like "path_provider" to store and retrieve the Call object as a serialized object.
Another option could be to use the "callUUID" of the Call object as a key to store and retrieve it from the storage. You can pass the "callUUID" via PUSH message, and use it to retrieve the Call object from the storage. However, you need to make sure that the "callUUID" is unique and persistent across sessions, so you may need to use a combination of the SIP call ID and the local session ID.
A third option could be to use a global state manager like "Provider" or "Redux" to store the Call object and share it across the application. This way, you can access the Call object from any widget, even if it is not passed directly as an argument. However, you need to be careful with the performance and complexity of using a global state manager, especially if you have a large and complex application.
I hope these suggestions can help you solve your problem

What are the best practices when working with data from multiple sources in Flutter/Bloc?

The Bloc manual describes the example of a simple Todos app. It works as an example, but I get stuck when trying to make it into a more realistic app. Clearly, a more realistic Todos app needs to keep working when the user temporarily loses network connection, and also needs to occasionally check the server for updates that the user might have added from another device.
So as a basic data model I have:
dataFromServer, which is refreshed every five minutes, and
localData, that describes what changes have been made locally but haven't been synchronized to the server yet.
My current idea is to have three kinds of events:
on<GetTodosFromServer>() which runs every few minutes to check the server for updates and only changes the dataFromServer,
on<TodoAdded>() (and its friends TodoDeleted, TodoChecked, and so on) which get triggered when the user changes the data, and only change the localData, and
on<SyncTodoToServer>() which runs whenever the user changes the todo list, or when network connectivity is restored, and tries to send the changes to the server, retrieves the new value from the server, and then sets the new dataFromServer and localData.
So obviously there's a lot of interaction between these three methods. When a new todo is added after the synchronization to the server starts, but before synchronization is finished, it needs to stay in the local changes object. When GetTodosFromServer and SyncTodoToServer both return server data, they need to find out who has the latest data and keep that. And so on.
Coming from a Redux background, I'm used to having two reducers (one for local data, one for server data) that would only respond to simple actions. E.g. an action { "type": "TodoSuccessfullySyncedToServer", uploadedData: [...], serverResponse: [...] } would be straightforward to parse for both the localData and the dataFromServer reducer. The reducer doesn't contain any of the business logic, it receives actions one by one and all you need to think about inside the reducer is the state before the action, the action itself, and the state after the action. Anything you rely on to handle the action will be in the action itself, not in the context. So different pieces of code that generate those actions can just fire these actions without thinking, knowing that the reducer will handle them correctly.
Bloc on the other hand seems to mix business logic and updating the state. API calls are made within the event handlers, which will emit a value possibly many seconds later. So every time you return from an asynchronous call in an event handler, you need to think about how the state might have changed while that call was happening and the consequences this has on what you're currently doing. Also, an object in the state can be updated by different events that need to coordinate among themselves how to avoid conflicts while doing so.
Is there a best practice on how to avoid the complexity that brings? Is it best practice to split large events into "StartSyncToServer" and "SuccessfullySyncedToServer" events where the second behaves a lot like a Redux reducer? I don't see any of that in the examples, so is there another way this complexity is typically avoided in Bloc? Or is Bloc entirely unopinionated on these things?
I'm not looking for personal opinions here, only if there's something I missed in the Bloc manual (or other authoritative source) about how this was intended to work.

Running continuos thread in app delegate is proper or not

In my app requirement is, when the app is launch for the first time it will send request to server to get data, parse it and save it in document folder which will be used across entire project.Again after particular time interval the app will send request to server to get updated data(if any) and update that data in document folder, which again will be updated across entire project.All this process is happening in background thread.This process will repeat until the app is running in foreground once the user close the app, the app will get terminate, it will not go in background.
This repeated request I am creating in app delegate as well as doing xml parsing once the data is received and saving after parsing. Now my question is, Is this proper means doing too much stuff in app delegate is safe or there is some limitation or is this bad programming?
What is the correct way of doing this?
I disagree with torrey.lyons to an extent. I think creating singletons is bad practice generally speaking and should be avoided where possible. One thing you should never do is code a class so that it has to be a singleton. Purpose built singletons tend to increase coupling and can be really problematic when it comes to unit testing where you might want to replace your singleton with a stub class or you might need it to be reinitialised for each unit test.
If this task of getting data is an application level task, there is absolutely no reason why it can't logically be located in the application delegate. I would however create a "connection manager" as torrey.lyons suggests and have one as a property of the app delegate.
I would also not use an explicit background thread to do the data update but I would use a subclass of NSOperation. This is a whole lot easier than managing your own thread.
It is bad practice. Your app delegate should ideally be concerned purely with its own responsibilities, i.e.. responding to the messages the application sends its delegate. It is much better to split off other discrete responsibilities into other objects. For example, you could have a "connection manager" object that is responsible for periodically communicating with the server. If you are sure the app will only connect to one server at a time you probably want to use the singleton pattern so that there only one instance of the object in your application and it can be easily reached by any other class. A good discussion of the proper role of the app delegate and singletons can be found on at Singletons, AppDelegates and top-level data. A good general overview on writing singletons can be found under the Care and Feeding of Singletons.

Why use the Bundle when you can just use the Application?

I'm reading this article on how to : correctly retain variable state in Android and I'm reminded that I've never gotten a good answer (and can't find one here) for why it's better to tussle with the Bundle (which isn't a HUGE hassle, but definitely has its limitations) rather than just always have an Application overridden in your App, and just store all your persistent data members there. Is there some leakage risk? Is there a way that the memory can be released unexpectedly? I'm just not clear on this... it SEEMS like it's a totally reliable "attic" to all the Activities, and is the perfect place to store anything that you're worried might be reset when the user turns the device or suspends the app.
Am I wrong on this? Would love to get some clarity on what the true life cycle of the memory is in the Application.
Based on the answers below, let me extend my question.
Suppose I have an app that behaves differently based on an XML file that it loads at startup.
Specifically, the app is a user-info gathering app, and depending on the XML settings it will follow an open ended variety of paths (collecting info A, but not J, and offering Survey P, followed by an optional PhotoTaking opportunity etc.)
Ideally I don't have to store the details of this behavior path in a Bundle (god forbid) or a database (also ugly, but less so). I would load the XML, process it, and have the Application hold onto that structure, so I can refer to it for what to do next and how. If the app is paused and the Application is released, it's not *THAT big a hassle to check for null in my CustomFlow object (that is generated as per the XML) and re-instantiate it. It doesn't sound like this would happen all that often, anyway. Would this be a good example of where Application is the *best tool?
The question as to which method is better largely depends upon what information you are storing and need access to and who (which components, packages, etc.) needs access to that information. Additionally, settings like launchMode and configChanges which alter the lifecycle can help you to determine which method is best for you.
First, let me note, that I am a huge advocate for extending the Application object and often extend the Application class, but take everything stated here in its context as it is important to understand that there are circumstances where it simply is not beneficial.
On the Lifecycle of an Application: Chubbard mostly correctly stated that the Application has the same life as a Singleton component. While they are very close, there are some minute differences. The Application itself is TREATED as a Singleton by the OS and is alive for as long as ANY component is alive, including an AppWidget (which may exist in another app) or ContentResolver.
All of your components ultimately access the same object even if they are in multiple Tasks or Processes. However, this is not guaranteed to remain this way forever (as the Application is not ACTUALLY a Singleton), and is only guaranteed in the Google Android, rather than the manufacturer overridden releases. This means that certain things should be handled with care within the Application Object.
Your Application object will not die unless all of your components are killed as well. However, Android has the option to kill any number of components. What this means is that you are never guaranteed to have an Application object, but if any of your components are alive, there IS an Application to associate it to.
Another nice thing about Application is that it is not extricably bound to the components that are running. Your components are bound to it, though, making it extremely useful.
Things to Avoid in Application Object:
As per ususal, avoid static Contexts. In fact, often, you shouldn't store a Context in here at all, because the Application is a Context itself.
Most methods in here should be static, because you are not guaranteed to get the same Application object, even though its extremely likely.
If you override Application, the type of you data and methods store here will help you further determine whether you need to make a Singleton component or not.
Drawables and its derivatives are the most likely to "leak" if not taken care of, so it is also recommended that you avoid references to Drawables here as well.
Runtime State of any single component. This is because, again, you are not guaranteed to get back the same Application object. Additionally, none of the lifecycle events that occur in an Activity are available here.
Things to store in the Application (over Bundle)
The Application is an awesome place to store data and methods that must be shared between components, especially if you have multiple entry points (multiple components that can be started and run aside from a launch activity). In all of my Applications, for instance, I place my DEBUG tags and Log code.
If you have a ContentProvider or BroadcastReceiver, this makes Application even more ideal because these have small lifecycles that are not "renewable" like the Activity or AppWidgetProvider and can now access those data or methods.
Preferences are used to determine, typically, run options over multiple runs, so this can be a great place to handle your SharedPreferences, for instance, with one access rather than one per component. In fact, anything that "persists" across multiple runs is great to access here.
Finally, one major overlooked advantage is that you can store and organize your Constants here without having to load another class or object, because your Application is always running if one of your components is. This is especially useful for Intent Actions and Exception Messages and other similar types of constants.
Things to store in Bundle rather than Application
Run-time state that is dependent upon the presence or state of a single component or single component run. Additionally, anything that is dependant upon the display state, orientation, or similar Android Services is not preferrable here. This is because Application is never notified of these changes. Finally, anything that depends upon notification from that Android System should not be placed here, such as reaction to Lifecycle events.
And.... Elsewhere
In regard to other data that needs to be persisted, you always have databases, network servers, and the File System. Use them as you always would have.
As useful and overlooked as the Application is, a good understanding is important as it is not ideal. Hopefully, these clarifications will give you a little understanding as to why gurus encourage one way over the other. Understand that many developers have similar needs and most instruction is based on what techniques and knowledge a majority of the community has. Nothing that Google says applies to all programmer's needs and there is a reason that the Application was not declared Final.
Remember, there is a reason Android needs to be able to kill your components. And the primary reason is memory, not processing. By utilizing the Application as described above and developing the appropriate methods to persist the appropriate information, you can build stronger apps that are considerate to the System, the User, its sibling components AND other developers. Utilizing the information that everyone here has provided should give you some great guidance as to how and when to extend your Application.
Hope this helps,
FuzzicalLogic
I prefer to subclass Application and point my manifest to that. I think that's the sane way of coding android although the Android architects from Google think you should use Singletons (eek) to do that. Singletons have the same lifetime as Application so everything that applies to them applies to Application except much less dependency mess Singletons create. Essentially they don't even use bundles. I think using subclass Application has dramatically made programming in Android much faster with far less hassle.
Now for the downside. Your application can be shutdown should the phone need more memory or your Application goes into the background. That could mean the user answered the phone or checked their email. So for example, say you have an Activity that forces the user to login to get a token that other Activities will use to make server calls. That's something you might store in your service object (not android service just a class that sends network calls to your server) that you store in your subclass of Application. Well if your Application gets shutdown you'll loose that token, and when the user clicks the back button your user might return to an Activity that assumes you are already authenticated and boom your service class fails to work.
So what can you do? Continue to use Bundle awfulness? Well no you could easily store security tokens into the bundle (although there might be some security issues with that depending on how this works for your app), or you have to code your Activities to not assume a specific state the Application is in. I had to check for a loss of the token and redirect the user back to the login screen when that happens. But, depending on how much state your Application object holds this could be tricky. But keep in mind your Application can know when it's being shutdown and persist it's internal state to a bundle. That at least allows you to keep your Objects in memory for 99% of the time your Application, and only save/restore when it gets shutdown rather than constantly serializing and deserializing with boiler plate code whenever you move between Activities. Using Application lets you centralize how your program can be brought up and shutdown, and since it normally lives longer than any one activity it can reduce the need for the program to reconstitute the guts of your App as the user moves between Activities. That makes your code cleaner by keeping out details of the app from every Activity, reduces overhead if your Application is already built, shares common instances/code, and allows Activities to be reclaimed without loosing your program all together. All good programs need a centralized hub that is the core, and subclassing Application gives you that while allowing you to participate in the Android lifecycle.
My personal favorite is to use http://flexjson.sourceforge.net/ to serialize my Java objects into bundles as JSON if I need to send objects around or save them. Far easier than writing to sqlite DB when all you need to do is persist data. And nice when sending data between two Activities using objects instead of broken apart primitives.
Remember by centralizing your model in the Application you create a place to share code between multiple Activities so you can always delegate an Activities persistence to an object in the Application by hooking the onPause() as well allowing persistence to be centrally located.
The short answer is: use bundles as it makes saving your state out when you're backgrounded easier. Also, it's complicated.
The long answer:
My understanding is, as soon as you Activity's onPause method is called (and onSaveInstanceState which gives you a bundle into which you should store your Activity's data) your process can be terminated without further warning. Later, when the user comes back to your application, your activity is given an onCreate call with that original bundle from which to restore its state. This will happen to all your activitys in what was your original stack.
Being able to restore your state from the bundle (which Android will save for you as your process goes away) is how Android maintain's the myth of multi-tasking. If you don't dump your activity's state out to a bundle each time onSaveInstanceState is called, your app will look like it's been restarted when the user may have just switched out for a second. This can be especially troubling when the system is resource constrained as the system would need to kill off processes more often in order to keep the device running quickly
Why the Application can be Bad
The Application does not actually get a chance to save any of its data if the process is shut down. It does have an onDestroy method but the docs will tell you that this actually never gets called by the system on an actual device. This means that, in the constrained case I mentioned above, any incidental information about what's going on within an Activity (if you've saved it in the Application) will be lost if the process is ended.
Developer's often miss this case (and it can be really annoying for users) because they're either running on a dev phone which never gets hit with using many applications at the same time. We're also never using the app for a while, then switching to another application and, after a while, switching back again.

How to sync CoreData and a REST web service asynchronously and the same time properly propagate any REST errors into the UI

Hey, I'm working on the model layer for our app here.
Some of the requirements are like this:
It should work on iPhone OS 3.0+.
The source of our data is a RESTful Rails application.
We should cache the data locally using Core Data.
The client code (our UI controllers) should have as little knowledge about any network stuff as possible and should query/update the model with the Core Data API.
I've checked out the WWDC10 Session 117 on Building a Server-driven User Experience, spent some time checking out the Objective Resource, Core Resource, and RestfulCoreData frameworks.
The Objective Resource framework doesn't talk to Core Data on its own and is merely a REST client implementation. The Core Resource and RestfulCoreData all assume you talk to Core Data in your code and they solve all the nuts and bolts in the background on the model layer.
All looks okay so far and initially I though either Core Resource or RestfulCoreData will cover all of the above requirements, but... There's a couple of things none of them seemingly happen to solve correctly:
The main thread should not be blocked while saving local updates to the server.
If the saving operation fails the error should be propagated to the UI and no changes should be saved to the local Core Data storage.
Core Resource happens to issue all of its requests to the server when you call - (BOOL)save:(NSError **)error on your Managed Object Context and therefore is able to provide a correct NSError instance of the underlying requests to the server fail somehow. But it blocks the calling thread until the save operation finishes. FAIL.
RestfulCoreData keeps your -save: calls intact and doesn't introduce any additional waiting time for the client thread. It merely watches out for the NSManagedObjectContextDidSaveNotification and then issues the corresponding requests to the server in the notification handler. But this way the -save: call always completes successfully (well, given Core Data is okay with the saved changes) and the client code that actually called it has no way to know the save might have failed to propagate to the server because of some 404 or 421 or whatever server-side error occurred. And even more, the local storage becomes to have the data updated, but the server never knows about the changes. FAIL.
So, I'm looking for a possible solution / common practices in dealing with all these problems:
I don't want the calling thread to block on each -save: call while the network requests happen.
I want to somehow get notifications in the UI that some sync operation went wrong.
I want the actual Core Data save fail as well if the server requests fail.
Any ideas?
You should really take a look at RestKit (http://restkit.org) for this use case. It is designed to solve the problems of modeling and syncing remote JSON resources to a local Core Data backed cache. It supports an offline mode for working entirely from the cache when there is no network available. All syncing occurs on a background thread (network access, payload parsing, and managed object context merging) and there is a rich set of delegate methods so you can tell what is going on.
There are three basic components:
The UI Action and persisting the change to CoreData
Persisting that change up to the server
Refreshing the UI with the response of the server
An NSOperation + NSOperationQueue will help keep the network requests orderly. A delegate protocol will help your UI classes understand what state the network requests are in, something like:
#protocol NetworkOperationDelegate
- (void)operation:(NSOperation *)op willSendRequest:(NSURLRequest *)request forChangedEntityWithId:(NSManagedObjectID *)entity;
- (void)operation:(NSOperation *)op didSuccessfullySendRequest:(NSURLRequest *)request forChangedEntityWithId:(NSManagedObjectID *)entity;
- (void)operation:(NSOperation *)op encounteredAnError:(NSError *)error afterSendingRequest:(NSURLRequest *)request forChangedEntityWithId:(NSManagedObjectID *)entity;
#end
The protocol format will of course depend on your specific use case but essentially what you're creating is a mechanism by which changes can be "pushed" up to your server.
Next there's the UI loop to consider, to keep your code clean it would be nice to call save: and have the changes automatically pushed up to the server. You can use NSManagedObjectContextDidSave notifications for this.
- (void)managedObjectContextDidSave:(NSNotification *)saveNotification {
NSArray *inserted = [[saveNotification userInfo] valueForKey:NSInsertedObjects];
for (NSManagedObject *obj in inserted) {
//create a new NSOperation for this entity which will invoke the appropraite rest api
//add to operation queue
}
//do the same thing for deleted and updated objects
}
The computational overhead for inserting the network operations should be rather low, however if it creates a noticeable lag on the UI you could simply grab the entity ids out of the save notification and create the operations on a background thread.
If your REST API supports batching, you could even send the entire array across at once and then notify you UI that multiple entities were synchronized.
The only issue I foresee, and for which there is no "real" solution is that the user will not want to wait for their changes to be pushed to the server to be allowed to make more changes. The only good paradigm I have come across is that you allow the user to keep editing objects, and batch their edits together when appropriate, i.e. you do not push on every save notification.
This becomes a sync problem and not one easy to solve. Here's what I'd do: In your iPhone UI use one context and then using another context (and another thread) download the data from your web service. Once it's all there go through the sync/importing processes recommended below and then refresh your UI after everything has imported properly. If things go bad while accessing the network, just roll back the changes in the non UI context. It's a bunch of work, but I think it's the best way to approach it.
Core Data: Efficiently Importing Data
Core Data: Change Management
Core Data: Multi-Threading with Core Data
You need a callback function that's going to run on the other thread (the one where actual server interaction happens) and then put the result code/error info a semi-global data which will be periodically checked by UI thread. Make sure that the wirting of the number that serves as the flag is atomic or you are going to have a race condition - say if your error response is 32 bytes you need an int (whihc should have atomic acces) and then you keep that int in the off/false/not-ready state till your larger data block has been written and only then write "true" to flip the switch so to speak.
For the correlated saving on the client side you have to either just keep that data and not save it till you get OK from the server of make sure that you have a kinnf of rollback option - say a way to delete is server failed.
Beware that it's never going to be 100% safe unless you do full 2-phase commit procedure (client save or delete can fail after the signal from the server server) but that's going to cost you 2 trips to the server at the very least (might cost you 4 if your sole rollback option is delete).
Ideally, you'd do the whole blocking version of the operation on a separate thread but you'd need 4.0 for that.