How to do simple cache file in Flink-Scala? - scala

I am new to Flink. I am really confused how to do file caching and load it into a dataset ? I can't find a simple example. I am confused why we need to create a dataset first to call "RichMapFunction" ? How I cache file that with nothing do with any other dataset? In sample I found, it kind of performed join with other dataset. Thank you.

For the case to join two data sets, and one data set is small, use broadcast to avoid shuffle. Without broadcasting, it is a pain to shuffle a large data set.
E.g. one dataset has 1 billion records, another one has 100 records. With broadcast, the small dataset will be distributed to all task managers processing those 1 billion records - no moving 1 billion record for join. Without broadcast, the typical behaviour for joining operation is to shuffle the 1 billion records and 100 records, so that records with same key are in the same machine, which is much more expensive compared to broadcast.
The RichMapFunction provides the open() method and method to access RuntimeContext. In the open() function, the Flink job can get broadcasted dataset through getRuntimeContext(). getBroadcastVariable(). The open() function is called only one time for each operator, so the broadcasted dataset is initialised one time and then it can be applied to all incoming records. That is the reason why to use RichMapFunction() instead of MapFunction().
Note - Broadcast applies to the case that the dataset to broadcast is small. Need to create a dataset first and then broadcast the dataset to all operator. Please refer to here for the usage of the API.
For distributed file caching, it is for the case that the operation(e.g. Map operation) needs to load external file one time and use it in the operation.
E.g. A trained model is saved on HDFS. In Flink job, it needs to load the model and apply the model to each record. For this case, the Flink job can use distributed file cache API. The model file will be pulled from HDFS to local machine, and all tasks running on that machine can share the pulled file locally, which saves network and time.
You do not need to create a dataset for the file to be distributed, but using registerCachedFile(). Like the same reason for broadcasting dataset, using RichMapFunction allows the Flink job to load/init distributed file one time.
Please refer to this document for the usage.

Related

Spark/Synapse Optimal handling huge gzipped xml file (+600mb compressed size)

For a task we need to process huge transactional xml files which are gz(ipped). Each line in the uncompressed file can be interpreted as its own xml record.
When working with small files like 100 MiB this works fine. The moment à collect() is performed on the huge input file it tends to fail OOM and the jvm crashes.
As this is a compressed (gz) file it can not be processed in parallel (AFAIK).
I was thinking about
using the toLocalIterator() to split it first up into smaller packets of 200K xml entries which are distributed to the other nodes for their cost om processing. Apparently the toLocalIterator() does also the collect() first (to test)
Other option is to use the some kind of index value and filter on it ("index > 5000") and set the limit(5000) to simulate paging through the 2 Million or more entries.
But I have no clue to what I should pay attention to parralize. Any tips are welcome.
Settings to pay attention and how to apply them in Azure Synapse etc.
how to push the read xml over the nodes to be processed in their executor/tasks.
could streaming a single file be an option?
any tips are welcome
Currently my code is done in scala due the fact the java libraries are easily accessible to convert the xml to json and extract the values I need.
Many thanks in advance (also for reading this)
TL;DR suggestion:
Step 1. Increase driver memory and test
Step 2. Increase executor memory and test if first step fails
Slightly longer version:
The fact that it gives OOM on collect() operation doesn't indicate whether it is OOM on spark.read operation or df.collect()
Spark scheduler will run the DAG when it encounters an Action but not when it is a Transformation.
So if collect is your first action, it is at that point it actually runs the DAG and the OOM may even be on read but manifesting as OOM on collect
Spark UI will provide insights on where the OOM happens
You are right that uncompressing gzip wont be parallelised. On read operation, it will use a single executor and even a single core. So I would increase executor memory until there is sufficient memory to gzip the whole file into memory - not just to the exact file size, leave the usual 400MB / 0.7% buffer.
If the error is indeed happening on the collect() operation, then you need to sufficiently increase driver memory.
Your app will not be parallelised at read. Your app will not be parallelised at collect()
You app can be parallelised during the transformations in between them and you can force the parallelisation to the extent you want to tune it by repartitioning your dataframe / dataset / rdd further.
Finally, I would consider again whether you do need the collect or whether you can store the output as a number of partitioned files?
I think the zipped file is always going to be a bottleneck so one alternative is to unzip it and see if that helps. I would also consider loading up the xml to a table in Synapse (which can deal with gzipped files). This would have the effect of unzipping it, you could then pass it into a Synapse Notebook with the synapsesql method, eg in Scala:
// Get the table with the XML column from the database and expose as temp view
val df = spark.read.synapsesql("yourPool.dbo.someXMLTable")
df.createOrReplaceTempView("someXMLTable")
You could process the XML as I have done here and then write it back to the Synapse dedicated SQL pool as an internal table:
val df2 = spark.sql("""
SELECT
colA,
colB,
xpath_string(pkData,'/DataSet/EnumObject[name="Inpatient"]/value') xvalue
FROM someXMLTable
""")
// Write that dataframe back to the dedicated SQL pool
df2.write.synapsesql("yourPool.dbo.someXMLTable_processed", Constants.INTERNAL)
This would ensure you are keeping things in parallel, no collect required. NB there are a couple of assumptions in there around uploading the gzipped files to a dedicated SQL pool and that the xpath_string does what you need which need to be checked and confirmed. The proposed pattern:

Parallel Writes Of Multiple DataFrames in Spark

I have a scenario , where I have to write multiple data frames into parquet format.
I have used this
df.write
.format("parquet")
.mode(<write-mode>)
.option("compression", "gzip")
.save(<file-path>)
Now , I have around 15 data frames that will be writing the data to parquet.
I see at a time only one task is getting executed (so , only 1 data frame is getting written) . Also when I checked the number of active executors in the spark-ui , I see only 1 executor is being used
My questions are :
Can I use parallel writes to the parquet store for a single data
frame ?
Can I do parallel writes of multiple data frames to
parquet(instead of the write happening sequentially)?
Certainly possible. https://georgheiler.com/2019/12/05/parallel-aggregation-of-dataframes/
Is a nice example I created recently.
The main thing is you need to issue actions / writes in parallel on the driver. Thus means you somehow manually need to manage threads and concurrency.
But equally important is to set sparks scheduler to fair mode. Otherwise it will submit in parallel and only work in parallel if additional slots are free. At least in your setting this doesn't seem to be like that. So only when setting it to fair, the scheduler will give every running action an equal share of slots.
You potentially could create multiple pools of resources.

Spark dataframe saveAsTable is using a single task

We have a pipeline for which the initial stages are properly scalable - using several dozen workers apiece.
One of the last stages is
dataFrame.write.format(outFormat).mode(saveMode).
partitionBy(partColVals.map(_._1): _*).saveAsTable(tname)
For this stage we end up with a single worker. This clearly does not work for us - in fact the worker runs out of disk space - on top of being very slow.
Why would that command end up running on a single worker/single task only?
Update The output format was parquet. The number of partition columns did not affect the result (tried one column as well as several columns).
Another update None of the following conditions (as posited by an answer below) held:
coalesce or partitionBy statements
window / analytic functions
Dataset.limit
sql.shuffle.partitions
The problem is unlikely to be related in any way to saveAsTable.
A single task in a stage indicates that the input data (Dataset or RDD) has only a one partition. This is contrast to cases where there are multiple tasks but one or more have significantly higher execution time, which normally correspond to partitions containing positively skewed keys. Also you should confound a single task scenario with low CPU utilization. The former is usually a result of insufficient IO throughput (high CPU wait times are the most obvious indication of that), but in rare cases can be traced to usage of shared objects with low level synchronization primitives.
Since standard data sources don't shuffle data on write (including cases where partitionBy and bucketBy options are used) it is safe to assume that data has been repartitioned somewhere in the upstream code. Usually it means that one of the following happened:
Data has been explicitly moved to a single partition using coalesce(1) or repartition(1).
Data has been implicitly moved to a single partition for example with:
Dataset.limit
Window function applications with window definition lacking PARTITION BY clause.
df.withColumn(
"row_number",
row_number().over(Window.orderBy("some_column"))
)
sql.shuffle.partitions option is set to 1 and upstream code includes non-local operation on a Dataset.
Dataset is a result of applying a global aggregate function (without GROUP BY caluse). This usually not an issue, unless function is non-reducing (collect_list or comparable).
While there is no evidence that it is the problem here, in general case you should also possibility, data contains only a single partition all the way to the source. This usually when input is fetched using JDBC source, but the 3rd party formats can exhibit the same behavior.
To identify the source of the problem you should either check the execution plan for the input Dataset (explain(true)) or check SQL tab of the Spark Web UI.

What is RDD in spark

Definition says:
RDD is immutable distributed collection of objects
I don't quite understand what does it mean. Is it like data (partitioned objects) stored on hard disk If so then how come RDD's can have user-defined classes (Such as java, scala or python)
From this link: https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch03.html It mentions:
Users create RDDs in two ways: by loading an external dataset, or by
distributing a collection of objects (e.g., a list or set) in their
driver program
I am really confused understanding RDD in general and in relation to spark and hadoop.
Can some one please help.
An RDD is, essentially, the Spark representation of a set of data, spread across multiple machines, with APIs to let you act on it. An RDD could come from any datasource, e.g. text files, a database via JDBC, etc.
The formal definition is:
RDDs are fault-tolerant, parallel data structures that let users
explicitly persist intermediate results in memory, control their
partitioning to optimize data placement, and manipulate them using a
rich set of operators.
If you want the full details on what an RDD is, read one of the core Spark academic papers, Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
RDD is a logical reference of a dataset which is partitioned across many server machines in the cluster. RDDs are Immutable and are self recovered in case of failure.
dataset could be the data loaded externally by the user. It could be a json file, csv file or a text file with no specific data structure.
UPDATE: Here is the paper what describe RDD internals:
Hope this helps.
Formally, an RDD is a read-only, partitioned collection of records. RDDs can only be created through deterministic operations on either (1) data in stable storage or (2) other RDDs.
RDDs have the following properties –
Immutability and partitioning:
RDDs composed of collection of records which are partitioned. Partition is basic unit of parallelism in a RDD, and each partition is one logical division of data which is immutable and created through some transformations on existing partitions.Immutability helps to achieve consistency in computations.
Users can define their own criteria for partitioning based on keys on which they want to join multiple datasets if needed.
Coarse grained operations:
Coarse grained operations are operations which are applied to all elements in datasets. For example – a map, or filter or groupBy operation which will be performed on all elements in a partition of RDD.
Fault Tolerance:
Since RDDs are created over a set of transformations , it logs those transformations, rather than actual data.Graph of these transformations to produce one RDD is called as Lineage Graph.
For example –
firstRDD=sc.textFile("hdfs://...")
secondRDD=firstRDD.filter(someFunction);
thirdRDD = secondRDD.map(someFunction);
result = thirdRDD.count()
In case of we lose some partition of RDD , we can replay the transformation on that partition in lineage to achieve the same computation, rather than doing data replication across multiple nodes.This characteristic is biggest benefit of RDD , because it saves a lot of efforts in data management and replication and thus achieves faster computations.
Lazy evaluations:
Spark computes RDDs lazily the first time they are used in an action, so that it can pipeline transformations. So , in above example RDD will be evaluated only when count() action is invoked.
Persistence:
Users can indicate which RDDs they will reuse and choose a storage strategy for them (e.g., in-memory storage or on Disk etc.)
These properties of RDDs make them useful for fast computations.
Resilient Distributed Dataset (RDD) is the way Spark represents data. The data can come from various sources :
Text File
CSV File
JSON File
Database (via JBDC driver)
RDD in relation to Spark
Spark is simply an implementation of RDD.
RDD in relation to Hadoop
The power of Hadoop reside in the fact that it let users write parallel computations without having to worry about work distribution and fault tolerance. However, Hadoop is inefficient for the applications that reuse intermediate results. For example, iterative machine learning algorithms, such as PageRank, K-means clustering and logistic regression, reuse intermediate results.
RDD allows to store intermediate results inside the RAM. Hadoop would have to write it to an external stable storage system, which generate disk I/O and serialization. With RDD, Spark is up to 20X faster than Hadoop for iterative applications.
Futher implementations details about Spark
Coarse-Grained transformations
The transformations applied to an RDD are Coarse-Grained. This means that the operations on a RDD are applied to the whole dataset, not on its individual elements. Therefore, operations like map, filter, group, reduce are allowed, but operations like set(i) and get(i) are not.
The inverse of coarse-grained is fine-grained. A fine-grained storage system would be a database.
Fault Tolerant
RDD are fault tolerant, which is a property that enable the system to continue working properly in the event of the failure of one of its components.
The fault tolerance of Spark is strongly linked to its coarse-grained nature. The only-way to implement fault tolerance in a fine-grained storage system is to replicate its data or log updates across machines. However, in a coarse-grained system like Spark, only the transformations are logged. If a partition of an RDD is lost, the RDD has enough information the recompute it quickly.
Data storage
The RDD is "distributed" (separated) in partitions. Each partitions can be present in the memory or on the disk of a machine. When Spark wants to launch a task on a partition, he sends it to the machine containing the partition. This is know as "locally aware scheduling".
Sources :
Great research papers about Spark :
http://spark.apache.org/research.html
Include the paper suggested by Ewan Leith.
RDD = Resilient Distributed Dataset
Resilient (Dictionary meaning) = (of a substance or object) able to recoil or spring back into shape after bending, stretching, or being compressed
RDD is defined as (from LearningSpark - OREILLY): The ability to always recompute an RDD is actually why RDDs are called “resilient.” When a machine holding RDD data fails, Spark uses this ability to recompute the missing partitions, transparent to the user.
This means 'data' is surely available at all times. Also, Spark can run without Hadoop and hence data is NOT replicated. One of the best characterstics of Hadoop2.0 is 'High Availbility' with the help of Passive Standby Namenode. The same is achieved by RDD in Spark.
A given RDD (Data) can span across various nodes in Spark cluster (like in Hadoop based cluster).
If any node crashes, Spark can re-compute the RDD and loads the data in some other node, and data is always available.
Spark revolves around the concept of a resilient distributed dataset (RDD), which is a fault-tolerant collection of elements that can be operated on in parallel (http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds)
To compare RDD with scala collection, below are few differences
Same but runs on a cluster
Lazy in nature where scala collections are strict
RDD is always Immutable i.e., you can not change the state of the data in the collection
RDD are self recovered i.e., fault-tolerant
RDD (Resilient Distributed Datasets) are an abstraction for representing data. Formally they are a read-only, partitioned collection of records that provides a convenient API.
RDD provide a performant solution for processing large datasets on cluster computing frameworks such as MapReduce by addressing some key issues:
data is kept in memory to reduce disk I/O; this is particularly relevant for iterative computations -- not having to persist intermediate data to disk
fault-tolerance (resilience) is obtained not by replicating data but by keeping track of all transformations applied to the initial dataset (the lineage). This way, in case of failure lost data can always be recomputed from its lineage and avoiding data replication again reduces storage overhead
lazy evaluation, i.e. computations are carried out first when they're needed
RDD's have two main limitations:
they're immutable (read-only)
they only allow coarse-grained transformations (i.e. operations that apply to the entire dataset)
One nice conceptual advantage of RDD's is that they pack together data and code making it easier to reuse data pipelines.
Sources: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, An Architecture for Fast and General Data Processing on Large Clusters
RDD is a way of representing data in spark.The source of data can be JSON,CSV textfile or some other source.
RDD is fault tolerant which means that it stores data on multiple locations(i.e the data is stored in distributed form ) so if a node fails the data can be recovered.
In RDD data is available at all times.
However RDD are slow and hard to code hence outdated.
It has been replaced by concept of DataFrame and Dataset.
RDD
is an Resilient Distributed Data Set.
It is an core part of spark.
It is an Low Level API of spark.
DataFrame and DataSets are built on top of RDD.
RDD are nothing but row level data i.e. sits on n number of executors.
RDD's are immutable .means you cannot change the RDD. But you can create new RDD using Transformation and Actions
Resilient Distributed Datasets (RDDs)
Resilient: If an operation is lost while performing on a node in spark, the dataset can be reconstituted from history.
Distributed: Data in RDDs is divided into one or many partitions and distributed as in-memory collections of objects across worker nodes in the cluster.
Dataset: RDDs are datasets that consist of records, records are uniquely identifiable data collections within a dataset.

Spark out of memory

I have a folder with 150 G of txt files (around 700 files, on average each 200 MB).
I'm using scala to process the files and calculate some aggregate statistics in the end. I see two possible approaches to do that:
manually loop through all the files, do the calculations per file and merge the results in the end
read the whole folder to one RDD, do all the operations on this single RDD and let spark do all the parallelization
I'm leaning towards the second approach as it seems cleaner (no need for parallelization specific code), but I'm wondering if my scenario will fit the constraints imposed by my hardware and data. I have one workstation with 16 threads and 64 GB of RAM available (so the parallelization will be strictly local between different processor cores). I might scale the infrastructure with more machines later on, but for now I would just like to focus on tunning the settings for this one workstation scenario.
The code I'm using:
- reads TSV files, and extracts meaningful data to (String, String, String) triplets
- afterwards some filtering, mapping and grouping is performed
- finally, the data is reduced and some aggregates are calculated
I've been able to run this code with a single file (~200 MB of data), however I get a java.lang.OutOfMemoryError: GC overhead limit exceeded
and/or a Java out of heap exception when adding more data (the application breaks with 6GB of data but I would like to use it with 150 GB of data).
I guess I would have to tune some parameters to make this work. I would appreciate any tips on how to approach this problem (how to debug for memory demands). I've tried increasing the 'spark.executor.memory' and using a smaller number of cores (the rational being that each core needs some heap space), but this didn't solve my problems.
I don't need the solution to be very fast (it can easily run for a few hours even days if needed). I'm also not caching any data, but just saving them to the file system in the end. If you think it would be more feasible to just go with the manual parallelization approach, I could do that as well.
Me and my team had processed a csv data sized over 1 TB over 5 machine #32GB of RAM each successfully. It depends heavily what kind of processing you're doing and how.
If you repartition an RDD, it requires additional computation that
has overhead above your heap size, try loading the file with more
paralelism by decreasing split-size in
TextInputFormat.SPLIT_MINSIZE and TextInputFormat.SPLIT_MAXSIZE
(if you're using TextInputFormat) to elevate the level of
paralelism.
Try using mapPartition instead of map so you can handle the
computation inside a partition. If the computation uses a temporary
variable or instance and you're still facing out of memory, try
lowering the number of data per partition (increasing the partition
number)
Increase the driver memory and executor memory limit using
"spark.executor.memory" and "spark.driver.memory" in spark
configuration before creating Spark Context
Note that Spark is a general-purpose cluster computing system so it's unefficient (IMHO) using Spark in a single machine
To add another perspective based on code (as opposed to configuration): Sometimes it's best to figure out at what stage your Spark application is exceeding memory, and to see if you can make changes to fix the problem. When I was learning Spark, I had a Python Spark application that crashed with OOM errors. The reason was because I was collecting all the results back in the master rather than letting the tasks save the output.
E.g.
for item in processed_data.collect():
print(item)
failed with OOM errors. On the other hand,
processed_data.saveAsTextFile(output_dir)
worked fine.
Yes, PySpark RDD/DataFrame collect() function is used to retrieve all the elements of the dataset (from all nodes) to the driver node. We should use the collect() on smaller dataset usually after filter(), group(), count() etc. Retrieving larger dataset results in out of memory.