I have a Modelica model where I am initialising an array of submodels.
I'm wondering how to best broadcast one value to all array elements. Let me illustrate, only one of the three demonstrated alternatives works without errors/warnings.
model test_each_fixed
model sub
Real p;
end sub;
//sub sub_instance[6](p(start=linspace(0.0, 1.0, 6), fixed=true));
// gives Translation Error Non-array modification ‘true‘ for
// array component ‘fixed‘, possibly due to missing ‘each‘.
// fair enough, let's add an "each":
//sub sub_instance[6](p(start=linspace(0.0, 1.0, 6), each fixed=true));
// gives Translation Warning 'each' used when modifying non-array element p.
// damned if I do, damned if I don't?
// The following works, but is there a better way than an explicit fill()?
sub sub_instance[6](p(start=linspace(0.0, 1.0, 6), fixed=fill(true,6)));
equation
end test_each_fixed;
This is using OpenModelica v1.18.0-dev.beta1 (64-bit)
So, my questions:
Is the translation warning I get for the second variant an OpenModelica bug, or is this expected Modelica behaviour, considering the error thrown without an each?
Is there a better way to broadcast a true to all fixed attributes in the array element members?
The second variant with each should work in Modelica; https://specification.modelica.org/master/inheritance-modification-and-redeclaration.html#modifiers-for-array-elements
And I cannot see any better alternatives.
Related
I have no idea why this example is ambiguous. (My apologies for not adding the code here, it's simply too long.)
I have added prefix (_ maxLength) as an overload to LazyDropWhileBidirectionalCollection. subscript(position) is defined on LazyPrefixCollection. Yet, the following code from the above example shouldn't be ambiguous, yet it is:
print([0, 1, 2].lazy.drop(while: {_ in false}).prefix(2)[0]) // Ambiguous use of 'lazy'
It is my understanding that an overload that's higher up in the protocol hierarchy will get used.
According to the compiler it can't choose between two types; namely LazyRandomAccessCollection and LazySequence. (Which doesn't make sense since subscript(position) is not a method of LazySequence.) LazyRandomAccessCollection would be the logical choice here.
If I remove the subscript, it works:
print(Array([0, 1, 2].lazy.drop(while: {_ in false}).prefix(2))) // [0, 1]
What could be the issue?
The trail here is just too complicated and ambiguous. You can see this by dropping elements. In particular, drop the last subscript:
let z = [0, 1, 2].lazy.drop(while: {_ in false}).prefix(2)
In this configuration, the compiler wants to type z as LazyPrefixCollection<LazyDropWhileBidirectionalCollection<[Int]>>. But that isn't indexable by integers. I know it feels like it should be, but it isn't provable by the current compiler. (see below) So your [0] fails. And backtracking isn't powerful enough to get back out of this crazy maze. There are just too many overloads with different return types, and the compiler doesn't know which one you want.
But this particular case is trivially fixed:
print([0, 1, 2].lazy.drop(while: {_ in false}).prefix(2).first!)
That said, I would absolutely avoid pushing the compiler this hard. This is all too clever for Swift today. In particular overloads that return different types are very often a bad idea in Swift. When they're simple, yes, you can get away with it. But when you start layering them on, the compiler doesn't have a strong enough proof engine to resolve it. (That said, if we studied this long enough, I'm betting it actually is ambiguous somehow, but the diagnostic is misleading. That's a very common situation when you get into overly-clever Swift.)
Now that you describe it (in the comments), the reasoning is straightforward.
LazyDropWhileCollection can't have an integer index. Index subscripting is required to be O(1). That's the meaning of the Index subscript versus other subscripts. (The Index subscript must also return the Element type or crash; it can't return an Element?. That's way there's a DictionaryIndex that's separate from Key.)
Since the collection is lazy and has an arbitrary number of missing elements, looking up any particular integer "count" (first, second, etc.) is O(n). It's not possible to know what the 100th element is without walking through at least 100 elements. To be a collection, its O(1) index has to be in a form that can only be created by having previously walked the sequence. It can't be Int.
This is important because when you write code like:
for i in 1...1000 { print(xs[i]) }
you expect that to be on the order of 1000 "steps," but if this collection had an integer index, it would be on the order of 1 million steps. By wrapping the index, they prevent you from writing that code in the first place.
This is especially important in highly generic languages like Swift where layers of general-purpose algorithms can easily cascade an unexpected O(n) operation into completely unworkable performance (by "unworkable" I mean things that you expected to take milliseconds taking minutes or more).
Change the last row to this:
let x = [0, 1, 2]
let lazyX: LazySequence = x.lazy
let lazyX2: LazyRandomAccessCollection = x.lazy
let lazyX3: LazyBidirectionalCollection = x.lazy
let lazyX4: LazyCollection = x.lazy
print(lazyX.drop(while: {_ in false}).prefix(2)[0])
You can notice that the array has 4 different lazy conformations - you will have to be explicit.
I'm trying to determine the "Swift-y" way of creating my own contiguous memory containers (in my particular case, I'm building n-dimensional arrays). I want my containers to be as close to Swift's builtin Array as possible - in terms of functionality and usability.
I need to access the pointer to memory of my containers for stuff like Accelerate and BLAS operations.
I want to know whether an ArraySlice's pointer would point to the first element of the slice, or the first element of its base.
When I tried to test UnsafePointer<Int>(array) == UnsafePointer<Int>(array[1...2]) it looks like Swift doesn't allow pointer construction from ArraySlices (or I just did it incorrectly).
I'm looking for advice on which way would be the most "Swift-y"?
I understand that when slicing an array the follow is true:
let array = [1, 2, 3]
array[1] == array[1...2][1]
and
array[1...2][0] != 2 # index out of bounds error
In other words, indexing is always performed relative to the base Array.
Which suggests: that we should return a pointer to the base's first element. Because slices are relative to their base.
However, iteration through a slice (obviously) only considers elements of that slice:
for i in array[1..2] # i takes on 2 followed by 3
Which suggests: that we should return a pointer to the slice's first element. Because slices have their own starting point.
If my user wanted to operate on a slice in a BLAS operation it would be intuitive to expect:
mmul(matrix1[1...2, 0...1].pointer, matrix2[4...5, 0...1].pointer)
to point to the first elements of slice, but I don't know if this is the way a Swift ArraySlice would do things.
My Question: Should a container slice object's pointer point to the first element of the slice, or, the first element of the base container.
This operation is unsafe:
UnsafePointer<Int>(array)
What you mean is:
array.withUnsafeBufferPointer { ... }
This applies to your types as well, and is the pattern you should employ to interoperate with BLAS and Accelerate. You should not try to use a pointer method IMO.
There is no promise that array will continue to exist by the time you actually access the pointer, even if that happens in the same line of code. ARC is free to destroy that memory shockingly quickly.
UnsafeBufferPointer is actually a very nice type in that it is already promised to be contiguous and it behaves as a Collection.
My suggestion here would be to manage your own memory internally, probably with a ManagedBuffer, but maybe just with a UnsafeMutablePointer that you alloc and destroy yourself. It's very important that you manage the layout of the data so that it's compatible with Accelerate. You don't want Array<Array<UInt8>>. That's going to add too much structure. You want a blob of bytes that you index into in the good-ol' C ways (row*width+column, etc). You probably don't want your slices to return pointers at all directly. Your mmul function is likely going to need special logic to understand how to pull the pieces it needs out of slices with minimal copying so that it works with vDSP_mmul. "Generic" and "Accelerate" seldom go together.
For example, considering this:
mmul(matrix1[1...2, 0...1].pointer, matrix2[4...5, 0...1].pointer)
(Obviously I assume your real matrices are dramatically larger; this kind of matrix doesn't make much sense to send to vDSP.)
You're going to have to write your own mmul here obviously since this memory isn't laid out correctly. So you might as well pass the slices. Then you'd do something like (totally untested, uncompiled, and I'm sure the syntax is wildly wrong):
mmul(m1: MatrixSlice, m2: MatrixSlice) -> Matrix {
var s1 = UnsafeMutablePointer<Float>.alloc(m1.rows * m1.columns)
// use vDSP_vgathr to copy each sliced row out of m1 into s1
var s2 = UnsafeMutablePointer<Float>.alloc(m2.rows * m2.columns)
// use vDSP_vgathr to copy each sliced row out of m2 into s2
var result = UnsafeMutablePointer<Float>.alloc(m1.rows * m2.columns)
vDSP_mmul(s1, 1, s2, 1, result, 1, m1.rows, m2.columns, m1.columns)
s1.destroy()
s2.destroy()
// This will need to call result.move() or moveInitializeFrom or something
return Matrix(result)
}
I'm just throwing out stuff here, but this is probably the kind of structure you'd want.
To your underlying question about whether the pointer to the container or to the data is usually passed by Swift, the answer is unfortunately "magic" for Array and no one else. Passing an Array to something that wants a pointer will magically (by the compiler, not the stdlib) pass a pointer to the storage of the Array. No other type gets this magic. Not even ContiguousArray gets this magic. If you pass a ContiguousArray to something that wants a pointer, you'll pass the pointer to the container (and if it's mutable, corrupt the container; true story, hated that one…)
Thanks in part to #RobNapier the answer to my question is: ArraySlice's pointer should point to the slice's first element.
The way I verified this was simply:
var array = [5,4,3,325,67,7,3]
array.withUnsafeBufferPointer{ $0 } != array[3...6].withUnsafeBufferPointer{ $0 } # true
^--- points to 5's address ^--- points to 325's address
I'm not seeing a lot of info in the swift stdlib reference. For example, Dictionary says certain methods (like remove) will invalidate indices, but that's it.
For a language to call itself "safe", it needs a solution to the classic C++ footguns:
get pointer to element in a vector, then add more elements (pointer is now invalidated), now use pointer, crash
start iterating through a collection. while iterating, remove some elements (either before or after the current iterator position). continue iterating, crash.
(edit: in c++, you're lucky to crash - worse case is memory corruption)
I believe 1 is solved by swift because if a collection stores classes, taking a reference (e.g. strong pointer) to an element will increase the refcount. However, I don't know the answer for 2.
It would be super useful if there was a comparison of footguns in c++ that are/are not solved by swift.
EDIT, due to Robs answer:
It does appear that there's some undocumented snapshot-like behavior going on
with Dictionary and/or for loops. The iteration creates a snapshot / hidden
copy of it when it starts.
Which gives me both a big "WAT" and "cool, that's sort of safe, I guess", and "how expensive is this copy?".
I don't see this documented either in Generator or in for-loop.
The below code prints two logical snapshots of the dictionary. The first
snapshot is userInfo as it was at the start of the iteration loop, and does
not reflect any modifications made during the loop.
var userInfo: [String: String] = [
"first_name" : "Andrei",
"last_name" : "Puni",
"job_title" : "Mad scientist"
]
userInfo["added_one"] = "1" // can modify because it's var
print("first snapshot:")
var hijacked = false
for (key, value) in userInfo {
if !hijacked {
userInfo["added_two"] = "2" // doesn't error
userInfo.removeValueForKey("first_name") // doesn't error
hijacked = true
}
print("- \(key): \(value)")
}
userInfo["added_three"] = "3" // modify again
print("final snapshot:")
for (key, value) in userInfo {
print("- \(key): \(value)")
}
As you say, #1 is not an issue. You do not have a pointer to the object in Swift. You either have its value or a reference to it. If you have its value, then it's a copy. If you have a reference, then it's protected. So there's no issue here.
But let's consider the second and experiment, be surprised, and then stop being surprised.
var xs = [1,2,3,4]
for x in xs { // (1)
if x == 2 {
xs.removeAll() // (2)
}
print(x) // Prints "1\n2\n3\n\4\n"
}
xs // [] (3)
Wait, how does it print all the values when we blow away the values at (2). We are very surprised now.
But we shouldn't be. Swift arrays are values. The xs at (1) is a value. Nothing can ever change it. It's not "a pointer to memory that includes an array structure that contains 4 elements." It's the value [1,2,3,4]. At (2), we don't "remove all elements from the thing xs pointed to." We take the thing xs is, create an array that results if you remove all the elements (that would be [] in all cases), and then assign that new array to xs. Nothing bad happens.
So what does the documentation mean by "invalidates all indices?" It means exactly that. If we generated indices, they're no good anymore. Let's see:
var xs = [1,2,3,4]
for i in xs.indices {
if i == 2 {
xs.removeAll()
}
print(xs[i]) // Prints "1\n2\n" and then CRASH!!!
}
Once xs.removeAll() is called, there's no promise that the old result of xs.indices means anything anymore. You are not permitted to use those indices safely against the collection they came from.
"Invalidates indices" in Swift is not the same as C++'s "invalidates iterators." I'd call that pretty safe, except the fact that using collection indices is always a bit dangerous and so you should avoid indexing collections when you can help it; iterate them instead. Even if you need the indexes for some reason, use enumerate to get them without creating any of the danger of indexing.
(Side note, dict["key"] is not indexing into dict. Dictionaries are a little confusing because their key is not their index. Accessing dictionaries by their DictionaryIndex index is just as dangerous as accessing arrays by their Int index.)
Note also that the above doesn't apply to NSArray. If you modify NSArray while iterating it, you'll get a "mutated collection while iterating" error. I'm only discussing Swift data types.
EDIT: for-in is very explicit in how it works:
The generate() method is called on the collection expression to obtain a value of a generator type—that is, a type that conforms to the GeneratorType protocol. The program begins executing a loop by calling the next() method on the stream. If the value returned is not None, it is assigned to the item pattern, the program executes the statements, and then continues execution at the beginning of the loop. Otherwise, the program does not perform assignment or execute the statements, and it is finished executing the for-in statement.
The returned Generator is a struct and contains a collection value. You would not expect any changes to some other value to modify its behavior. Remember: [1,2,3] is no different than 4. They're both values. When you assign them, they make copies. So when you create a Generator over a collection value, you're going to snapshot that value, just like if I created a Generator over the number 4. (This raises an interesting problem, because Generators aren't really values, and so really shouldn't be structs. They should be classes. Swift stdlib has been fixing that. See the new AnyGenerator for instance. But they still contain an array value, and you would never expect changes to some other array value to impact them.)
See also "Structures and Enumerations Are Value Types" which goes into more detail on the importance of value types in Swift. Arrays are just structs.
Yes, that means there's logically copying. Swift has many optimizations to minimize actual copying when it's not needed. In your case, when you mutate the dictionary while it's being iterated, that will force a copy to happen. Mutation is cheap if you're the only consumer of a particular value's backing storage. But it's O(n) if you're not. (This is determined by the Swift builtin isUniquelyReferenced().) Long story short: Swift Collections are Copy-on-Write, and simply passing an array does not cause real memory to be allocated or copied.
You don't get COW for free. Your own structs are not COW. It's something that Swift does in stdlib. (See Mike Ash's great discussion of how you would recreate it.) Passing your own custom structs causes real copies to happen. That said, the majority of the memory in most structs is stored in collections, and those collections are COW, so the cost of copying structs is usually pretty small.
The book doesn't spend a lot of time drilling into value types in Swift (it explains it all; it just doesn't keep saying "hey, and this is what that implies"). On the other hand, it was the constant topic at WWDC. You may be interested particularly in Building Better Apps with Value Types in Swift which is all about this topic. I believe Swift in Practice also discussed it.
EDIT2:
#KarlP raises an interesting point in the comments below, and it's worth addressing. None of the value-safety promises we're discussing are related to for-in. They're based on Array. for-in makes no promises at all about what would happen if you mutated a collection while it is being iterated. That wouldn't even be meaningful. for-in doesn't "iterate over collections," it calls next() on Generators. So if your Generator becomes undefined if the collection is changed, then for-in will blow up because the Generator blew up.
That means that the following might be unsafe, depending on how strictly you read the spec:
func nukeFromOrbit<C: RangeReplaceableCollectionType>(var xs: C) {
var hijack = true
for x in xs {
if hijack {
xs.removeAll()
hijack = false
}
print(x)
}
}
And the compiler won't help you here. It'll work fine for all of the Swift collections. But if calling next() after mutation for your collection is undefined behavior, then this is undefined behavior.
My opinion is that it would be poor Swift to make a collection that allows its Generator to become undefined in this case. You could even argue that you've broken the Generator spec if you do (it offers no UB "out" unless the generator has been copied or has returned nil). So you could argue that the above code is totally within spec and your generator is broken. Those arguments tend to be a bit messy with a "spec" like Swift's which doesn't dive into all the corner cases.
Does this mean you can write unsafe code in Swift without getting a clear warning? Absolutely. But in the many cases that commonly cause real-world bugs, Swift's built-in behavior does the right thing. And in that, it is safer than some other options.
Let's say I maybe want to import a component based on some condition, let's say a boolean variable. I've tried this, but it gives me an error message. For instance, consider the following code:
model myNewModel
parameter Boolean use_Something;
myLibrary.myComponent component[if use_Something then 1 else 0];
// In other words (pseudo):
// if use_Something then 'Import The Component' else 'Do Nothing At All';
end myNewModel;
This is, intuitively, a safe statement, and as long as the boolean variable is true, it'll work as intended. For some units, for instance the fluidports of the Modelica Standard Library, it also works with the [0] size. But as soon as I turn the variable to false, I encounter errors regarding the fact that many components are not compatible with "zero size". I've had this problem, for instance, with the MassFlowSources in the Modelica Standard Library. Is there a smooth/elegant way to work around this? Thanks in advance!
You can use conditional components in Modelica.
model myNewModel
parameter Boolean use_Something;
myLibrary.myComponent component if use_Something;
end myNewModel;
This component may then only be used in connect-statements. If the condition is false, these connections are ignored by the tool.
If I have an ArrayList<Double> dblList and a Predicate<Double> IS_EVEN I am able to remove all even elements from dblList using:
Collections2.filter(dblList, IS_EVEN).clear()
if dblList however is a result of a transformation like
dblList = Lists.transform(intList, TO_DOUBLE)
this does not work any more as the transformed list is immutable :-)
Any solution?
Lists.transform() accepts a List and helpfully returns a result that is RandomAccess list. Iterables.transform() only accepts an Iterable, and the result is not RandomAccess. Finally, Iterables.removeIf (and as far as I see, this is the only one in Iterables) has an optimization in case that the given argument is RandomAccess, the point of which is to make the algorithm linear instead of quadratic, e.g. think what would happen if you had a big ArrayList (and not an ArrayDeque - that should be more popular) and kept removing elements from its start till its empty.
But the optimization depends not on iterator remove(), but on List.set(), which is cannot be possibly supported in a transformed list. If this were to be fixed, we would need another marker interface, to denote that "the optional set() actually works".
So the options you have are:
Call Iterables.removeIf() version, and run a quadratic algorithm (it won't matter if your list is small or you remove few elements)
Copy the List into another List that supports all optional operations, then call Iterables.removeIf().
The following approach should work, though I haven't tried it yet.
Collection<Double> dblCollection =
Collections.checkedCollection(dblList, Double.class);
Collections2.filter(dblCollection, IS_EVEN).clear();
The checkCollection() method generates a view of the list that doesn't implement List. [It would be cleaner, but more verbose, to create a ForwardingCollection instead.] Then Collections2.filter() won't call the unsupported set() method.
The library code could be made more robust. Iterables.removeIf() could generate a composed Predicate, as Michael D suggested, when passed a transformed list. However, we previously decided not to complicate the code by adding special-case logic of that sort.
Maybe:
Collection<Double> odds = Collections2.filter(dblList, Predicates.not(IS_EVEN));
or
dblList = Lists.newArrayList(Lists.transform(intList, TO_DOUBLE));
Collections2.filter(dblList, IS_EVEN).clear();
As long as you have no need for the intermediate collection, then you can just use Predicates.compose() to create a predicate that first transforms the item, then evaluates a predicate on the transformed item.
For example, suppose I have a List<Double> from which I want to remove all items where the Integer part is even. I already have a Function<Double,Integer> that gives me the Integer part, and a Predicate<Integer> that tells me if it is even.
I can use these to get a new predicate, INTEGER_PART_IS_EVEN
Predicate<Double> INTEGER_PART_IS_EVEN = Predicates.compose(IS_EVEN, DOUBLE_TO_INTEGER);
Collections2.filter(dblList, INTEGER_PART_IS_EVEN).clear();
After some tries, I think I've found it :)
final ArrayList<Integer> ints = Lists.newArrayList(1, 2, 3, 4, 5);
Iterables.removeIf(Iterables.transform(ints, intoDouble()), even());
System.out.println(ints);
[1,3,5]
I don't have a solution, instead I found some kind of a problem with Iterables.removeIf() in combination with Lists.TransformingRandomAccessList.
The transformed list implements RandomAccess, thus Iterables.removeIf() delegates to Iterables.removeIfFromRandomAccessList() which depends on an unsupported List.set() operation.
Calling Iterators.removeIf() however would be successful, as the remove() operation IS supported by Lists.TransformingRandomAccessList.
see: Iterables: 147
Conclusion: instanceof RandomAccess does not guarantee List.set().
Addition:
In special situations calling removeIfFromRandomAccessList() even works:
if and only if the elements to erase form a compact group at the tail of the List or all elements are covered by the Predicate.