I need to create a query in mongodb that needs to return the SECOND TO THE LAST document. I am planning to use $group for this query but i dont know what aggregation function to use. I only know $first and $last.
I have an example collection below and also include the expected output. Thank you!
"_id" : ObjectId("60dc27ac54b7c46bfa1b84b4"),
"auditlogs" : [
{
"_id" : ObjectId("60dc27ac54b7c46bfa1b84be"),
"userid" : ObjectId("5ffe702d59a9205db81fcb69"),
"action" : "ADDTRANSACTION"
},
{
"_id" : ObjectId("60dc27ac54b7c46bfa1b84bd"),
"userid" : ObjectId("5ffe644f9493e05db9245192"),
"action" : "EDITPROFILE"
},
{
"_id" : ObjectId("60dc27ac54b7c46bfa1b84bc"),
"userid" : ObjectId("5ffe64949493e05db9245197"),
"action" : "DELETETRANSACTION"
} ]
"_id" : ObjectId("60dc27ac54b7c46bfa1b75ge2"),
"auditlogs" : [
{
"_id" : ObjectId("60dc27ac54b7c46bfa1b84bb"),
"userid" : ObjectId("5ffe64b69493e05db924519b"),
"action" : "ADDTRANSACTION"
},
{
"_id" : ObjectId("60dc27ac54b7c46bfa1b84ba"),
"userid" : ObjectId("5ffe65419493e05db92451d4"),
"action" : "ADDTRANSACTION"
},
{
"_id" : ObjectId("60dc27ac54b7c46bfa1b84b9"),
"userid" : ObjectId("5ffe65689493e05db92451d9"),
"action" : "CHANGEACCESS"
},
{
"_id" : ObjectId("60dc27ac54b7c46bfa1b84b8"),
"userid" : ObjectId("5ffe65819493e05db92451dd"),
"action" : "DELETETRANSACTION"
},
{
"_id" : ObjectId("60dc27ac54b7c46bfa1b84b7"),
"userid" : ObjectId("5ffe65df9493e05db92451f3"),
"action" : "EDITPROFILE",
]
OUTPUT:
{"_id" : ObjectId("60dc27ac54b7c46bfa1b84b4"),"_id" : ObjectId("60dc27ac54b7c46bfa1b84bd"),"userid" : ObjectId("5ffe644f9493e05db9245192"),"action" : "EDITPROFILE"},
{"_id" : ObjectId("60dc27ac54b7c46bfa1b75ge2"),"_id" : ObjectId("60dc27ac54b7c46bfa1b84b8"),"userid" : ObjectId("5ffe65819493e05db92451dd"),"action" : "DELETETRANSACTION"}
You can't have two _id keys in one single object.
I've made the parent object's id to _parentId you can give it's a name anything you want except _id
Aggregation:
db.collection.aggregate([
{
$unwind: "$auditlogs"
},
{
"$project": {
"_parentId": "$_id",
"_id": "$auditlogs._id",
"action": "$auditlogs.action",
"userid": "$auditlogs.userid",
}
}
])
Playground
You can slice the array by -2 to get the last two item, then by 1 to get first one. Therefore, the array will be left the second to the last. Finally, unwind auditlogs so it can be changed from array to object which is structure that you want.
db.collection.aggregate([
{
$project: { auditlogs : { $slice: [ "$auditlogs", -2 ] } }
},
{
$project: { auditlogs : { $slice: [ "$auditlogs", 1 ] } }
},
{
$unwind: "$auditlogs"
}
])
Related
We have nested document and trying to group by array element. Our document structure looks like
/* 1 */
{
"_id" : ObjectId("5a690a4287e0e50010af1432"),
"slug" : [
"true-crime-the-10-most-infamous-american-murder-mysteries",
"10-most-infamous-american-murder-mysteries"
],
"tags" : [
{
"id" : "59244aa6b1be5055278e9b5b",
"name" : "true crime",
"_id" : "59244aa6b1be5055278e9b5b"
},
{
"id" : "5924524db1be5055278ebd6e",
"name" : "Occult Museum",
"_id" : "5924524db1be5055278ebd6e"
},
{
"id" : "5a690f0fc1a72100110c2656",
"_id" : "5a690f0fc1a72100110c2656",
"name" : "murder mysteries"
},
{
"id" : "59244d71b1be5055278ea654",
"name" : "unsolved murders",
"_id" : "59244d71b1be5055278ea654"
}
]
}
We want to find list of all slugs group by tag name. I am trying with following and it gets result but it isn't accurate. We have hundreds of records with each tag but i only get few with my query. I am not sure what i am doing wrong here.
Thanks in advance.
// Requires official MongoShell 3.6+
db.getCollection("test").aggregate(
[
{
"$match" : {
"item_type" : "Post",
"site_id" : NumberLong(2),
"status" : NumberLong(1)
}
},
{$unwind: "$tags" },
{
"$group" : {
"_id" : {
"tags᎐name" : "$tags.name",
"slug" : "$slug"
}
}
},
{
"$project" : {
"tags.name" : "$_id.tags᎐name",
"slug" : "$_id.slug",
"_id" : NumberInt(0)
}
}
],
{
"allowDiskUse" : true
}
);
Expected output is
TagName Slug
----------
true crime "true-crime-the-10-most-infamous-american-murder-mysteries",
"10-most-infamous-american-murder-mysteries"
"All records where tags true crime"
Instead of using slug as a part of _id you should use $push or $addToSet to accumulate them, try:
db.test.aggregate([
{
$unwind: "$tags"
},
{
$unwind: "$slug"
},
{
$group: {
_id: "$tags.name",
slugs: { $addToSet: "$slug" }
}
},
{
$project: {
_id: 1,
slugs: {
$reduce: {
input: "$slugs",
initialValue: "",
in: {
$concat: [ "$$value", ",", "$$this" ]
}
}
}
}
}
])
EDIT: to get comma separated string for slugs you can use $reduce with $concat
Output:
{ "_id" : "murder mysteries", "slugs" : ",10-most-infamous-american-murder-mysteries,true-crime-the-10-most-infamous-american-murder-mysteries" }
{ "_id" : "Occult Museum", "slugs" : ",10-most-infamous-american-murder-mysteries,true-crime-the-10-most-infamous-american-murder-mysteries" }
{ "_id" : "unsolved murders", "slugs" : ",10-most-infamous-american-murder-mysteries,true-crime-the-10-most-infamous-american-murder-mysteries" }
{ "_id" : "true crime", "slugs" : ",10-most-infamous-american-murder- mysteries,true-crime-the-10-most-infamous-american-murder-mysteries" }
I am working on a software that uses MongoDB as a database. I have a collection like this (this is just one document)
{
"_id" : ObjectId("5aef51e0af42ea1b70d0c4dc"),
"EndpointId" : "89799bcc-e86f-4c8a-b340-8b5ed53caf83",
"DateTime" : ISODate("2018-05-06T19:05:04.574Z"),
"Url" : "test",
"Tags" : [
{
"Uid" : "E2:02:00:18:DA:40",
"Type" : 1,
"DateTime" : ISODate("2018-05-06T19:05:04.574Z"),
"Sensors" : [
{
"Type" : 1,
"Value" : NumberDecimal("-98")
},
{
"Type" : 2,
"Value" : NumberDecimal("-65")
}
]
},
{
"Uid" : "12:3B:6A:1A:B7:F9",
"Type" : 1,
"DateTime" : ISODate("2018-05-06T19:05:04.574Z"),
"Sensors" : [
{
"Type" : 1,
"Value" : NumberDecimal("-95")
},
{
"Type" : 2,
"Value" : NumberDecimal("-59")
},
{
"Type" : 3,
"Value" : NumberDecimal("12.939770381907275")
}
]
}
]
}
and I want to run this query on it.
db.myCollection.aggregate([
{ $unwind: "$Tags" },
{
$match: {
$and: [
{
"Tags.DateTime": {
$gte: ISODate("2018-05-06T19:05:02Z"),
$lte: ISODate("2018-05-06T19:05:09Z"),
},
},
{ "Tags.Uid": { $in: ["C1:3D:CA:D4:45:11"] } },
],
},
},
{ $unwind: "$Tags.Sensors" },
{ $match: { "$Tags.Sensors.Type": { $in: [1, 2] } } },
{
$project: {
_id: 0,
EndpointId: "$EndpointId",
TagId: "$Tags.Uid",
Url: "$Url",
TagType: "$Tags.Type",
Date: "$Tags.DateTime",
SensorType: "$Tags.Sensors.Type",
Value: "$Tags.Sensors.Value",
},
},
])
the problem is, the second match (that checks $Tags.Sensors.Type) doesn't work and doesn't affect the result of the query.
How can I solve that?
If this is not the right way, what is the right way to run these conditions?
The $match stage accepts field names without a leading $ sign. You've done that correctly in your first $match stage but in the second one you write $Tags.Sensors.Type. Simply removing the leading $ sign should make your query work.
Mind you, the whole thing can be a bit simplified (and some beautification doesn't hurt, either):
You don't need to use $and in your example since it's assumed by default if you specify more than one criterion in a filter.
The $in that you use for the Tags.Sensors.Type filter can be a simple : kind of equality operator unless you have more than one element in the list of acceptable values.
In the $project stage, instead of (kind of) duplicating identical field names you can use the <field>: 1 syntax unless the order of the fields matters.
So the final query would be something like this.
db.myCollection.aggregate([
{
"$unwind" : "$Tags"
},
{
"$match" : {
"Tags.DateTime" : { "$gte" : ISODate("2018-05-06T19:05:02Z"), "$lte" : ISODate("2018-05-06T19:05:09Z") },
"Tags.Uid" : { "$in" : ["C1:3D:CA:D4:45:11"] }
}
}, {
"$unwind" : "$Tags.Sensors"
}, {
"$match" : {
"Tags.Sensors.Type" : { "$in" : [1,2] }
}
},
{
"$project" : {
"_id" : 0,
"EndpointId" : 1,
"TagId" : "$Tags.Uid",
"Url" : 1,
"TagType" : "$Tags.Type",
"Date" : "$Tags.DateTime",
"SensorType" : "$Tags.Sensors.Type",
"Value" : "$Tags.Sensors.Value"
}
}])
(Mongo newbie here, sorry) I have a mongodb collection, result of a mapreduce with this schema :
{
"_id" : "John Snow",
"value" : {
"countTot" : 500,
"countCall" : 30,
"comment" : [
{
"text" : "this is a text",
"date" : 2016-11-17 00:00:00.000Z,
"type" : "call"
},
{
"text" : "this is a text",
"date" : 2016-11-12 00:00:00.000Z,
"type" : "visit"
},
...
]
}
}
My goal is to have a document containing all the comments of a certain type. For example, a document John snow with all the calls.
I manage to have all the comments for a certain type using this :
db.general_stats.aggregate(
{ $unwind: '$value.comment' },
{ $match: {
'value.comment.type': 'call'
}}
)
However, I can't find a way to group the data received by the ID (for example john snow) even using the $group property. Any idea ?
Thanks for reading.
Here is the solution for your query.
db.getCollection('calls').aggregate([
{ $unwind: '$value.comment' },
{ $match: {
'value.comment.type': 'call'
}},
{
$group : {
_id : "$_id",
comment : { $push : "$value.comment"},
countTot : {$first : "$value.countTot"},
countCall : {$first : "$value.countCall"},
}
},
{
$project : {
_id : 1,
value : {"countTot":"$countTot","countCall":"$countCall","comment":"$comment"}
}
}
])
or either you can go with $project with $filter option
db.getCollection('calls').aggregate([
{
$project: {
"value.comment": {
$filter: {
input: "$value.comment",
as: "comment",
cond: { $eq: [ "$$comment.type", 'call' ] }
}
},
"value.countTot":"$value.countTot",
"value.countCall":"$value.countCall",
}
}
])
In both case below is my output.
{
"_id" : "John Snow",
"value" : {
"countTot" : 500,
"countCall" : 30,
"comment" : [
{
"text" : "this is a text",
"date" : "2016-11-17 00:00:00.000Z",
"type" : "call"
},
{
"text" : "this is a text 2",
"date" : "2016-11-17 00:00:00.000Z",
"type" : "call"
}
]
}
}
Here is the query which is the extension of the one present in OP.
db.general_stats.aggregate(
{ $unwind: '$value.comment' },
{ $match: {
'value.comment.type': 'call'
}},
{$group : {_id : "$_id", allValues : {"$push" : "$$ROOT"}}},
{$project : {"allValues" : 1, _id : 0} },
{$unwind : "$allValues" }
);
Output:-
{
"allValues" : {
"_id" : "John Snow",
"value" : {
"countTot" : 500,
"countCall" : 30,
"comment" : {
"text" : "this is a text",
"date" : ISODate("2016-11-25T10:46:49.258Z"),
"type" : "call"
}
}
}
}
Got my answer looking at this :
How to retrieve all matching elements present inside array in Mongo DB?
using the $addToSet property in the $group one.
Our project database has a capped collection called values which gets updated every few minutes with new data from sensors. These sensors all belong to a single sensor node, and I would like to query the last data from these nodes in a single aggregation. The problem I am having is filtering out just the last of ALL the types of sensors while still having only one (efficient) query. I looked around and found the $group argument, but I can't seem to figure out how to use it correctly in this case.
The database is structured as follows:
nodes:
{
"_id": 681
"sensors": [
{
"type": "foo"
},
{
"type": "bar"
}
]
}
values:
{
"_id" : ObjectId("570cc8b6ac55850d5740784e"),
"timestamp" : ISODate("2016-04-12T12:06:46.344Z"),
"type" : "foo",
"nodeid" : 681,
"value" : 10
}
{
"_id" : ObjectId("190ac8b6ac55850d5740776e"),
"timestamp" : ISODate("2016-04-12T12:06:46.344Z"),
"type" : "bar",
"nodeid" : 681,
"value" : 20
}
{
"_id" : ObjectId("167bc997bb66750d5740665e"),
"timestamp" : ISODate("2016-04-12T12:06:46.344Z"),
"type" : "bar",
"nodeid" : 200,
"value" : 20
}
{
"_id" : ObjectId("110cc9c6ac55850d5740784e"),
"timestamp" : ISODate("2016-04-09T12:06:46.344Z"),
"type" : "foo",
"nodeid" : 681,
"value" : 12
}
so let's imagine I want the data from node 681, I would want a structure like this:
nodes:
{
"_id": 681
"sensors": [
{
"_id" : ObjectId("570cc8b6ac55850d5740784e"),
"timestamp" : ISODate("2016-04-12T12:06:46.344Z"),
"type" : "foo",
"nodeid" : 681,
"value" : 10
},
{
"_id" : ObjectId("190ac8b6ac55850d5740776e"),
"timestamp" : ISODate("2016-04-12T12:06:46.344Z"),
"type" : "bar",
"nodeid" : 681,
"value" : 20
}
]
}
Notice how one value of foo is not queried, because I want to only get the latest value possible if there are more than one value (which is always going to be the case). The ordering of the collection is already according to the timestamp because the collection is capped.
I have this query, but it just gets all the values from the database (which is waaay too much to do in a lifetime, let alone one request of the web app), so I was wondering how I would filter it before it gets aggregated.
query:
db.nodes.aggregate(
[
{
$unwind: "$sensors"
},
{
$match:{
nodeid: 681
}
},
{
$lookup:{
from: "values", localField: "sensors.type", foreignField: "type", as: "sensors"
}
}
}
]
)
Try this
// Pipeline
[
// Stage 1 - sort the data collection if not already done (optional)
{
$sort: {
"timestamp":1
}
},
// Stage 2 - group by type & nodeid then get first item found in each group
{
$group: {
"_id":{type:"$type",nodeid:"$nodeid"},
"sensors": {"$first":"$$CURRENT"} //consider using $last if your collection is on reverse
}
},
// Stage 3 - project the fields in desired
{
$project: {
"_id":"$sensors._id",
"timestamp":"$sensors.timestamp",
"type":"$sensors.type",
"nodeid":"$sensors.nodeid",
"value":"$sensors.value"
}
},
// Stage 4 - group and push it to array sensors
{
$group: {
"_id":{nodeid:"$nodeid"},
"sensors": {"$addToSet":"$$CURRENT"}
}
}
]
as far as I got document structure, there is no need to use $lookup as all data is in readings(values) collection.
Please see proposed solution:
db.readings.aggregate([{
$match : {
nodeid : 681
}
},
{
$group : {
_id : {
type : "$type",
nodeid : "$nodeid"
},
readings : {
$push : {
timestamp : "$timestamp",
value : "$value",
id : "$_id"
}
}
}
}, {
$project : {
_id : "$_id",
readings : {
$slice : ["$readings", -1]
}
}
}, {
$unwind : "$readings"
}, {
$project : {
_id : "$readings.id",
type : "$_id.type",
nodeid : "$_id.nodeid",
timestamp : "$readings.timestamp",
value : "$readings.value",
}
}, {
$group : {
_id : "$nodeid",
sensors : {
$push : {
_id : "$_id",
timestamp : "$timestamp",
value : "$value",
type:"$type"
}
}
}
}
])
and output:
{
"_id" : 681,
"sensors" : [
{
"_id" : ObjectId("110cc9c6ac55850d5740784e"),
"timestamp" : ISODate("2016-04-09T12:06:46.344Z"),
"value" : 12,
"type" : "foo"
},
{
"_id" : ObjectId("190ac8b6ac55850d5740776e"),
"timestamp" : ISODate("2016-04-12T12:06:46.344Z"),
"value" : 20,
"type" : "bar"
}
]
}
Any comments welcome!
Is it possible to find in a nested array the max date and show its price then show the parent field like the actual price.
The result I want it to show like this :
{
"_id" : ObjectId("5547e45c97d8b2c816c994c8"),
"actualPrice":19500,
"lastModifDate" :ISODate("2015-05-04T22:53:50.583Z"),
"price":"16000"
}
The data :
db.adds.findOne()
{
"_id" : ObjectId("5547e45c97d8b2c816c994c8"),
"addTitle" : "Clio pack luxe",
"actualPrice" : 19500,
"fistModificationDate" : ISODate("2015-05-03T22:00:00Z"),
"addID" : "1746540",
"history" : [
{
"price" : 18000,
"modifDate" : ISODate("2015-05-04T22:01:47.272Z"),
"_id" : ObjectId("5547ec4bfeb20b0414e8e51b")
},
{
"price" : 16000,
"modifDate" : ISODate("2015-05-04T22:53:50.583Z"),
"_id" : ObjectId("5547f87e83a1dae00bc033fa")
},
{
"price" : 19000,
"modifDate" : ISODate("2015-04-04T22:53:50.583Z"),
"_id" : ObjectId("5547f87e83a1dae00bc033fe")
}
],
"__v" : 1
}
my query
db.adds.aggregate(
[
{ $match:{addID:"1746540"}},
{ $unwind:"$history"},
{ $group:{
_id:0,
lastModifDate:{$max:"$historique.modifDate"}
}
}
])
I dont know how to include other fields I used $project but I get errors
thanks for helping
You could try the following aggregation pipeline which does not need to make use of the $group operator stage as the $project operator takes care of the fields projection:
db.adds.aggregate([
{
"$match": {"addID": "1746540"}
},
{
"$unwind": "$history"
},
{
"$project": {
"actualPrice": 1,
"lastModifDate": "$history.modifDate",
"price": "$history.price"
}
},
{
"$sort": { "lastModifDate": -1 }
},
{
"$limit": 1
}
])
Output
/* 1 */
{
"result" : [
{
"_id" : ObjectId("5547e45c97d8b2c816c994c8"),
"actualPrice" : 19500,
"lastModifDate" : ISODate("2015-05-04T22:53:50.583Z"),
"price" : 16000
}
],
"ok" : 1
}