Reusing connections with reqwest - rest

I need to issue a long sequence of REST calls to the same server (let's call it myapi.com). At the moment, I am using the Rust library reqwest as follows:
I create a reqwest::Client with all default settings.
For each REST call:
I use client.post("https://myapi.com/path/to/the/api") to create a reqwest::RequestBuilder.
I configure the RequestBuilder to obtain a reqwest::Request.
I send() the Request, read the reqwest::Response.
I drop everything except the Client, start again.
I read in the docs that reqwest is supposed to pool connections within the same Client. Given that I always reuse the same Client, I would expect the first API call to take some more (owing to the initial TCP and HTTPS handshakes). However, I observe always a consistent, quite high latency across all requests. So, I am wondering if connections are reused at all, or re-established every time. If they are not, how do I get to recycle the same connection? I feel that latency would be drastically reduced if I could save myself some roundtrips.

Related

When to close HTTP Client in Flutter app?

My Flutter mobile app communicates with my back-end server. The docs say it's better to use Client class (IOClient) than plain get, put, etc. methods to maintain persistent connections across multiple requests to the same server.
Docs also say that:
It's important to close each client when it's done being used; failing
to do so can cause the Dart process to hang.
I don't understand when I need to close the client, because almost all app screens require HTTP connection to the same server. What's the best practice here?
Update:
Is it OK to close Client only before app is terminated, or should I close it every time app is hidden (goes to paused state)?
I personnaly think that closing client after each user action is the best practise.
What i call an "user action" can be constituted of multiple API request.
So i think the best is something like that:
var client = http.Client();
try {
var response = await client.post(
Uri.https('my-api-site.com', 'users/add'),
body: {'firstname': 'Alain', 'Lastname': 'Deseine'});
var Response = jsonDecode(utf8.decode(response.bodyBytes)) as Map;
...
// Add here every API request that you need to complete the users action
} finally {
// Then finally destroy the client.
client.close();
}
Don't close the HTTP Client
For some of you, it may sound odd, but the solution is as simple as not to do that.
Why
In most cases, the HTTP Client should be available for the whole app run time. Also, app resources are disposed automatically when the app is closed by the user. For that reason, in most cases, we don't need to handle the disposal of the HTTP Client.
When to dispose an HTTP Client?
Only if we want to run a limited, one-time, predicted, season of HTTP requests. In that case, you can dispose of the Client in many different ways (depending on your state management or the lifecycle that you want to trigger the disposal).
The dispose() function is common to all packages that handle cache and local resources. The documentation mentions that option, but it does not suggest you use it in every scenario. It should be handled in very specific scenarios only.
So for most of you, just don't dispose of the HTTP Client.
Keep connections atomic per server interaction.
almost all app screens require HTTP connection to the same server
One thing is that all screens make http calls, other thing is having constant high frequency interactions with the server.
Let's say we have a multiplayer app, that requires each second that passes to communicate with the server. If that was the case, leaving the client open would be critical. Even though you have the architectural consequence that the dart process would hang. This would mean that dart may not be the best solution for a high server traffic app.
To my understanding your app is not the case. You don't need to worry about leaving the connection open constantly, so you could only open and close it each time you need to use it without having to pay a high performance price.
It should be seemless to the user if you are opening a connection each time you try to consume your API.
Having said this, here are some other insights on this topic:
A large amount of clients connected to the server, even when not active, may consume resources of memory or objects (for example, if there is one thread per connection). On the other hand, keeping the connection on, will allow the client to detect if there is a connection problem to the server much faster (if that even matters). Extracted from this other thread
Hopefully this will help you, given your use case, take a better decision.
In terms of network traffic, it's better to use the same client throughout the app lifecycle. Establishing a new connection for each api is very expensive. However, as per the documentation,
It's important to close each client when it's done being used; failing to do so can cause the Dart process to hang.
Also, if client.close() isn't called, it doesn't mean that the server will keep the connection open forever. The server will close the connection if it is idle for a period more than the HTTP Keep-Alive Timeout. In this case, if the client sends a new request over the connection closed by server, he'll get a 408 Request Timeout.
So, if you decide to use the same client throughout the app lifecycle, keep in your mind the two possible issues that you may run into.

.Net 4.5 TCP Server scale to thousands of connected clients

I need to build a TCP server using C# .NET 4.5+, it must be capable of comfortably handling at least 3,000 connected clients that will be send messages every 10 seconds and with a message size from 250 to 500 bytes.
The data will be offloaded to another process or queue for batch processing and logging.
I also need to be able to select an existing client to send and receive messages (greater then 500 bytes) messages within a windows forms application.
I have not built an application like this before so my knowledge is based on the various questions, examples and documentation that I have found online.
My conclusion is:
non-blocking async is the way to go. Stay away from creating multiple threads and blocking IO.
SocketAsyncEventArgs - Is complex and really only needed for very large systems, BTW what constitutes a very large system? :-)
BeginXXX methods will suffice (EAP).
Using TAP I can simplify 3. by using Task.Factory.FromAsync, but it only produces the same outcome.
Use a global collection to keep track of the connected tcp clients
What I am unsure about:
Should I use a ManualResetEvent when interacting with the TCP Client collection? I presume the asyc events will need to lock access to this collection.
Best way to detect a disconnected client after I have called BeginReceive. I've found the call is stuck waiting for a response so this needs to be cleaned up.
Sending messages to a specific TCP Client. I'm thinking function in custom TCP session class to send a message. Again in an async model, would I need to create a timer based process that inspects a message queue or would I create an event on a TCP Session class that has access to the TcpClient and associated stream? Really interested in opinions here.
I'd like to use a thread for the entire service and use non-blocking principals within, are there anythings I should be mindful of espcially in context of 1. ManualResetEvent etc..
Thank you for reading. I am keen to hear constructive thoughts and or links to best practices/examples. It's been a while since I've coded in c# so apologies if some of my questions are obvious. Tasks, async/await are new to me! :-)
I need to build a TCP server using C# .NET 4.5+
Well, the first thing to determine is whether it has to be base-bones TCP/IP. If you possibly can, write one that uses a higher-level abstraction, like SignalR or WebAPI. If you can write one using WebSockets (SignalR), then do that and never look back.
Your conclusions sound pretty good. Just a few notes:
SocketAsyncEventArgs - Is complex and really only needed for very large systems, BTW what constitutes a very large system? :-)
It's not so much a "large" system in the terms of number of connections. It's more a question of how much traffic is in the system - the number of reads/writes per second.
The only thing that SocketAsyncEventArgs does is make your I/O structures reusable. The Begin*/End* (APM) APIs will create a new IAsyncResult for each I/O operation, and this can cause pressure on the garbage collector. SocketAsyncEventArgs is essentially the same as IAsyncResult, only it's reusable. Note that there are some examples on the 'net that use the SocketAsyncEventArgs APIs without reusing the SocketAsyncEventArgs structures, which is completely ridiculous.
And there's no guidelines here: heavier hardware will be able to use the APM APIs for much more traffic. As a general rule, you should build a barebones APM server and load test it first, and only move to SAEA if it doesn't work on your target server's hardware.
On to the questions:
Should I use a ManualResetEvent when interacting with the TCP Client collection? I presume the asyc events will need to lock access to this collection.
If you're using TAP-based wrappers, then await will resume on a captured context by default. I explain this in my blog post on async/await.
There are a couple of approaches you can take here. I have successfully written a reliable and performant single-threaded TCP/IP server; the equivalent for modern code would be to use something like my AsyncContextThread class. It provides a context that will cause await to resume on that same thread by default.
The nice thing about single-threaded servers is that there's only one thread, so no synchronization or coordination is necessary. However, I'm not sure how well a single-threaded server would scale. You may want to give that a try and see how much load it can take.
If you do find you need multiple threads, then you can just use async methods on the thread pool; await will not have a captured context and so will resume on a thread pool thread. In this case, yes, you'd need to coordinate access to any shared data structures including your TCP client collection.
Note that SignalR will handle all of this for you. :)
Best way to detect a disconnected client after I have called BeginReceive. I've found the call is stuck waiting for a response so this needs to be cleaned up.
This is the half-open problem, which I discuss in detail on my blog. The best way (IMO) to solve this is to periodically send a "noop" keepalive message to each client.
If modifying the protocol isn't possible, then the next-best solution is to just close the connection after a no-communication timeout. This is how HTTP "persistent"/"keep-alive" connections decide to close. There's another possibile solution (changing the keepalive packet settings on the socket), but it's not as easy (requires p/Invoke) and has other problems (not always respected by routers, not supported by all OS TCP/IP stacks, etc).
Oh, and SignalR will handle this for you. :)
Sending messages to a specific TCP Client. I'm thinking function in custom TCP session class to send a message. Again in an async model, would I need to create a timer based process that inspects a message queue or would I create an event on a TCP Session class that has access to the TcpClient and associated stream? Really interested in opinions here.
If your server can send messages to any client (i.e., it's not just a request/response protocol; any part of the server can send messages to any client without the client requesting an update), then yes, you'll need a proper queue of outgoing requests because you can't (reliably) issue multiple concurrent writes on a socket. I wouldn't have the consumer be timer-based, though; there are async-compatible producer/consumer queues available (like BufferBlock<T> from TPL Dataflow, and it's not that hard to write one if you have async-compatible locks and condition variables).
Oh, and SignalR will handle this for you. :)
I'd like to use a thread for the entire service and use non-blocking principals within, are there anythings I should be mindful of espcially in context of 1. ManualResetEvent etc..
If your entire service is single-threaded, then you shouldn't need any coordination primitives at all. However, if you do use the thread pool instead of syncing back to the main thread (for scalability reasons), then you will need to coordinate. I have a coordination primitives library that you may find useful because its types have both synchronous and asynchronous APIs. This allows, e.g., one method to block on a lock while another method wants to asynchronously block on a lock.
You may have noticed a recurring theme around SignalR. Use it if you possibly can! If you have to write a bare-bones TCP/IP server and can't use SignalR, then take your initial time estimate and triple it. Seriously. Then you can get started down the path of painful TCP with my TCP/IP FAQ blog series.

How to handle timeouts in a REST Client when calling methods with side-effect

Let's say we have a REST client with some UI that lists items it GETs from the server. The server also exposes some REST methods to manipulate the items (POST / PUT).
Now the user triggers one of those calls that are supposed to change the data on the server side. The UI will reflect the server state change, if the call was successful.
But what are good strategies to handle the situation when the server is not available?
What is a reasonable timeout lengths (especially in a 3G / Cloud setup)?
How do you handle the timeout in the client, considering the fact that the client can't tell whether the operation succeeded or not?
Are there any common patterns to solve that, other than a complete client termination (and subsequent restart)?
This will be application specific. You need to decide what makes the most sense in your usage case.
Perhaps start with a timeout similar to that of the the default PHP session of 24 minutes. Adjust as necessary based on testing.
Do you have server and client mixed up here? If so the server cannot tell if the client times out other than reaching the end of a session. The client can always query the server for a progress update.
This one is a little general to provide an answer for.

Should I connect directly to CouchDB's socket and pass HTTP requests or use node.js as a proxy?

First, here's my original question that spawned all of this.
I'm using Appcelerator Titanium to develop an iPhone app (eventually Android too). I'm connecting to CouchDB's port directly by using Titanium's Titanium.Network.TCPSocket object. I believe it utilizes the Apple SDK's CFSocket/NSStream class.
Once connected, I simply write:
'GET /mydb/_changes?filter=app/myfilter&feed=continuous&gameid=4&heartbeat=30000 HTTP/1.1\r\n\r\n'
directly to the socket. It keeps it open "forever" and returns JSON data whenever the db is updated and matches the filter and change request. Cool.
I'm wondering, is it ok to connect directly to CouchDB's socket like this, or would I be better off opening the socket to node.js instead, and maybe using this CouchDB node.js module to handle the CouchDB proxy through node.js?
My main concern is performance. I just don't have enough experience with CouchDB to know if hitting its socket and passing faux HTTP requests directly is good practice or not. Looking for experience and opinions on any ramifications or alternate suggestions.
It's me again. :-)
CouchDB inherits super concurrency handling from Erlang, the language it was written in. Erlang uses lightweight processes and message passing between those processes to achieve excellent performance under high concurrent load. It will take advantage of all cpu cores, too.
Nodejs runs a single process and basically only does one thing at a time within that process. Its event-based, non-blocking IO approach does allow it to multitask while it waits for chunks of IO but it still only does one thing at a time.
Both should easily handle tens of thousands of connections, but I would expect CouchDB to handle concurrency better (and with less effort on your part) than Node. And keep in mind that Node adds some latency if you put it in front of CouchDB. That may only be noticeable if you have them on different machines, though.
Writing directly to Couch via TCPSocket is a-ok as long as your write a well-formed HTTP request that follows the spec. (You're not passing a faux request...that's a real HTTP request you're sending just like any other.)
Note: HTTP 1.1 does require you to include a Host header in the request, so you'll need to correct your code to reflect that OR just use HTTP 1.0 which doesn't require it to keep things simple. (I'm curious why you're not using Titanium.Network.HTTPClient. Does it only give you the request body after the request finishes or something?)
Anyway, CouchDB can totally handle direct connections and--unless you put a lot of effort into your Node proxy--it's probably going to give users a better experience when you have 100k of them playing the game at once.
EDIT: If you use Node write an actual HTTP proxy. That will run a lot faster than using the module you provided and be simpler to implement. (Rather than defining your own API that then makes requests to Couch you can just pass certain requests on to CouchDB and block others, say, for security reasons.
Also take a look at how "multinode" works:
http://www.sitepen.com/blog/2010/07/14/multi-node-concurrent-nodejs-http-server/

What is a RESTful way of monitoring a REST resource for changes?

If there is a REST resource that I want to monitor for changes or modifications from other clients, what is the best (and most RESTful) way of doing so?
One idea I've had for doing so is by providing specific resources that will keep the connection open rather than returning immediately if the resource does not (yet) exist. For example, given the resource:
/game/17/playerToMove
a "GET" on this resource might tell me that it's my opponent's turn to move. Rather than continually polling this resource to find out when it's my turn to move, I might note the move number (say 5) and attempt to retrieve the next move:
/game/17/move/5
In a "normal" REST model, it seems a GET request for this URL would return a 404 (not found) error. However, if instead, the server kept the connection open until my opponent played his move, i.e.:
PUT /game/17/move/5
then the server could return the contents that my opponent PUT into that resource. This would both provide me with the data I need, as well as a sort of notification for when my opponent has moved without requiring polling.
Is this sort of scheme RESTful? Or does it violate some sort of REST principle?
Your proposed solution sounds like long polling, which could work really well.
You would request /game/17/move/5 and the server will not send any data, until move 5 has been completed. If the connection drops, or you get a time-out, you simply reconnect until you get a valid response.
The benefit of this is it's very quick - as soon as the server has new data, the client will get it. It's also resilient to dropped connections, and works if the client is disconnected for a while (you could request /game/17/move/5 an hour after it's been moved and get the data instantly, then move onto move/6/ and so on)
The issue with long polling is each "poll" ties up a server thread, which quickly breaks servers like Apache (as it runs out of worker-threads, so can't accept other requests). You need a specialised web-server to serve the long-polling requests.. The Python module twisted (an "an event-driven networking engine") is great for this, but it's more work than regular polling..
In answer to your comment about Jetty/Tomcat, I don't have any experience with Java, but it seems they both use a similar pool-of-worker-threads system to Apache, so it will have that same problem. I did find this post which seems to address exactly this problem (for Tomcat)
I'd suggest a 404, if your intended client is a web browser, as keeping the connection open can actively block browser requests in the client to the same domain. It's up to the client how often to poll.
2021 Edit: The answer above was in 2009, for context.
Today, I would suggest using a WebSocket interface with push notifications.
Alternatively, in the above suggestion, I might suggest holding the connection for 500-1000ms and check twice at the server before returning the 404, to reduce the overhead of creating multiple connections at the client.
I found this article proposing a new HTTP header, "When-Modified-After", that essentially does the same thing--the server waits and keeps the connection open until the resource is modified.
I prefer a version-based approach rather than a timestamp-based approach, since it's less prone to race conditions and gives you a little more information about what it is you're retrieving. Any thoughts to this approach?