I'm using HAL driver for STM32103F in Keil IDE. I need to transmit a code to an ESP which is connected to my STM32 via serial port. this code makes ESP publish whatever is in the command (CMD2) to the broker that I'm using, but the problem occurs when the command (CMD2) contains 0x00 (NULL), so the ESP does not publish anything to the broker. this is the code that I'm using:
char Appendix[8] = "\",0,0\r\n";
// DataLength = the length of the data stored in CMD2
// CMD2 might contain 0x00 in it
for(int i = 0; i < 7; i++) CMD2[DataLength+i] = Appendix[i];
CMD2[DataLength+7] = 0x00;
sprintf(PubTopic, "AT+MQTTPUB=0,\"Data/%s\",\"", SerialNumber);
SizeOfPub = strlen(PubTopic);
for(int i = SizeOfPub; i < SizeOfPub+DataLength+8; i++) PubTopic[i] = CMD2[i-SizeOfPub];
HAL_UART_Transmit(huart, (uint8_t *) PubTopic, SizeOfPub+DataLength+7, 10);
when my command (CMD2) contains 0x00 (NULL), ESP does not act correctly to the last line, but this code works fine when there is no 0x00 (NULL) in the command(CMD2). for example:
1)CMD2 = 0x45 0x55 0x53
2)CMD2 = 0x45 0x00 0x53
in the first case, there is no problem with the code, but in the second case, ESP does not publish anything.
Thanks to codo, I figured out that I have followed the wrong path. The best way of publishing a code using AT+COMMAND that may contain the NULL character is to use AT+MQTTPUBRAW. this is my code:
sprintf(PubTopic, "AT+MQTTPUBRAW=0,\"Data/%s\",%d,0,0", SerialNumber, DataLength);
StrPrintln(&huart1, PubTopic);
HAL_Delay(50);
/*
* SendCommand is a uint8_t variable that contains commands
* that need to be published
*/
HAL_UART_Transmit(&huart1, SendCommand, DataLength, 10);
Related
I am writing a program that writes to a device's range of HW registers. I am using mmap to map the HW addresses to virtual address (user space). I tested the result from the mmap and it is OK. I implemented a copy of a buffer into the device:
void bufferCopy(void *dest, void *src, const size_t size) {
uint8_t *pdest = static_cast<uint8_t *>(dest);
uint8_t *psrc = static_cast<uint8_t *>(src);
size_t iters = 0, tailBytes = 0;
/* iterate 64bit */
iters = (size / sizeof(uint64_t));
for (size_t index = 0; index < iters; ++index) {
*(reinterpret_cast<uint64_t *>(pdest)) =
*(reinterpret_cast<uint64_t *>(psrc));
pdest += sizeof(uint64_t);
psrc += sizeof(uint64_t);
}
.
.
.
but when running it on QEMU I get illegal instruction exception. When I debugged got it crashes on the next instruction (below is the asm of the main loop):
movdqu (%rsi,%rax,1),%xmm0
movups %xmm0,(%rdi,%rax,1) <----- this instruction crashes ...
add $0x10,%rax
cmp %rax,%r9
jne 0x7ffff7eca1e0 <_ZN12_GLOBAL__N_110bufferCopyEPvS0_m+64>
any ideas why ? my guess that you can write to PCI only 32/64 bit.
The compile doesn’t know my limitations, so it optimize my code and create vectorized loop (each iteration loads 128 bit and saves 128 bit). Is is making sense ?? can I write to PCI with vectorized instructions ?
Also, whether it is a missing feature in QEMU or a bug or just a recommendation, how can I prevent from the compiler to generate those vector instructions ?
I'm still doing SPI experiments between two Nucleo STM32H743 boards.
I've configured SPI in Full-Duplex mode, with CRC enabled, with a SPI frequency of 25MHz (so Slave can transmit without issue).
DSIZE is 8 bits and FIFO threshold is 4.
On Master side, I'm sending 4 bytes then wait for 5 bytes from the Slave. I know I could use half-duplex or simplex mode but I want to understand what's going on in full-duplex mode.
volatile unsigned long *CR1 = (unsigned long *)0x40013000;
volatile unsigned long *CR2 = (unsigned long *)0x40013004;
volatile unsigned long *TXDR = (unsigned long *)0x40013020;
volatile unsigned long *RXDR = (unsigned long *)0x40013030;
volatile unsigned long *SR = (unsigned long *)0x40013014;
volatile unsigned long *IFCR = (unsigned long *)0x40013018;
volatile unsigned long *TXCRC = (unsigned long *)0x40013044;
volatile unsigned long *RXCRC = (unsigned long *)0x40013048;
volatile unsigned long *CFG2 = (unsigned long *)0x4001300C;
unsigned long SPI_TransmitCommandFullDuplex(uint32_t Data)
{
// size of transfer (TSIZE)
*CR2 = 4;
/* Enable SPI peripheral */
*CR1 |= SPI_CR1_SPE;
/* Master transfer start */
*CR1 |= SPI_CR1_CSTART;
*TXDR = Data;
while ( ((*SR) & SPI_FLAG_EOT) == 0 );
// clear flags
*IFCR = 0xFFFFFFFF;
// disable SPI
*CR1 &= ~SPI_CR1_SPE;
return 0;
}
void SPI_ReceiveResponseFullDuplex(uint8_t *pData)
{
unsigned long temp;
// size of transfer (TSIZE)
*CR2 = 5;
/* Enable SPI peripheral */
*CR1 |= SPI_CR1_SPE;
/* Master transfer start */
*CR1 |= SPI_CR1_CSTART;
*TXDR = 0;
*((volatile uint8_t *)TXDR) = 0;
while ( ((*SR) & SPI_FLAG_EOT) == 0 );
*((uint32_t *)pData) = *RXDR;
*((uint8_t *)(pData+4)) = *((volatile uint8_t *)RXDR);
// clear flags
*IFCR = 0xFFFFFFFF;
// disable SPI
*CR1 &= ~SPI_CR1_SPE;
return temp;
}
This is working fine (both functions are just called in sequence in the main).
Then I tried to remove the SPI disabling between the two steps (ie. I don't clear and set again the bit SPE) and I got stuck in function SPI_ReceiveResponseFullDuplex in the while.
Is it necessary to disable SPI between two transmissions or did I make a mistake in the configuration ?
The behaviour of SPE bit is not very clear in the reference manual. For example is it written clearly that, in half-duplex mode, the SPI has to be disabled to change the direction of communication. But nothing in fuill-duplex mode (or I missed it).
This errata item might be relevant here.
Master data transfer stall at system clock much faster than SCK
Description
With the system clock (spi_pclk) substantially faster than SCK (spi_ker_ck divided by a prescaler), SPI/I2S master data transfer can stall upon setting the CSTART bit within one SCK cycle after the EOT event (EOT flag raise) signaling the end of the previous transfer.
Workaround
Apply one of the following measures:
• Disable then enable SPI/I2S after each EOT event.
• Upon EOT event, wait for at least one SCK cycle before setting CSTART.
• Prevent EOT events from occurring, by setting transfer size to undefined (TSIZE = 0)
and by triggering transmission exclusively by TXFIFO writes.
Your SCK frequency is 25 MHz, the system clock can be 400 or 480MHz, 16 or 19 times SCK. When you remove the lines clearing and setting SPE, only these lines remain in effect after detecting EOT
*IFCR = 0xFFFFFFFF;
*CR2 = 5;
*CR1 |= SPI_CR1_CSTART;
When this sequence (quite probably) takes less than 16 clock cycles, then there is the problem described above. Looks like someone did a sloppy work again at the SPI clock system. What you did first, clearing and setting SPE is one of the recommended workarounds.
I would just set TSIZE=9 at the start, then write the command and the dummy bytes in one go, it makes no difference in full-duplex mode.
Keep in mind that in full duplex mode, another 4 bytes are received which must be read and discarded before getting the real answer. This was not a problem with your original code, because clearing SPE discards data still in the receive FIFO, but it would become one if the modified code worked, e.g there were some more delay before enabling CSTART again.
I've been experimenting with writing to an external EEPROM using SPI and I've had mixed success. The data does get shifted out but in an opposite manner. The EEPROM requires a start bit and then an opcode which is essentially a 2-bit code for read, write and erase. Essentially the start bit and the opcode are combined into one byte. I'm creating a 32-bit unsigned int and then bit-shifting the values into it. When I transmit these I see that the actual data is being seen first and then the SB+opcode and then the memory address. How do I reverse this to see the opcode first then the memory address and then the actual data. As seen in the image below, the data is BCDE, SB+opcode is 07 and the memory address is 3F. The correct sequence should be 07, 3F and then BCDE (I think!).
Here is the code:
uint8_t mem_addr = 0x3F;
uint16_t data = 0xBCDE;
uint32_t write_package = (ERASE << 24 | mem_addr << 16 | data);
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_SPI_Transmit(&hspi1, &write_package, 2, HAL_MAX_DELAY);
HAL_Delay(10);
}
/* USER CODE END 3 */
It looks like as your SPI interface is set up to process 16 bit halfwords at a time. Therefore it would make sense to break up the data to be sent into 16 bit halfwords too. That would take care of the ordering.
uint8_t mem_addr = 0x3F;
uint16_t data = 0xBCDE;
uint16_t write_package[2] = {
(ERASE << 8) | mem_addr,
data
};
HAL_SPI_Transmit(&hspi1, (uint8_t *)write_package, 2, HAL_MAX_DELAY);
EDIT
Added an explicit cast. As noted in the comments, without the explicit cast it wouldn't compile as C++ code, and cause some warnings as C code.
You're packing your information into a 32 bit integer, on line 3 of your code you have the decision about which bits of data are placed where in the word. To change the order you can replace the line with:
uint32_t write_package = ((data << 16) | (mem_addr << 8) | (ERASE));
That is shifting data 16 bits left into the most significant 16 bits of the word, shifting mem_addr up by 8 bits and or-ing it in, and then adding ERASE in the least significant bits.
Your problem is the Endianness.
By default the STM32 uses little edian so the lowest byte of the uint32_t is stored at the first adrress.
If I'm right this is the declaration if the transmit function you are using:
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
It requires a pointer to uint8_t as data (and not a uint32_t) so you should get at least a warning if you compile your code.
If you want to write code that is independent of the used endianess, you should store your data into an array instead of one "big" variable.
uint8_t write_package[4];
write_package[0] = ERASE;
write_package[1] = mem_addr;
write_package[2] = (data >> 8) & 0xFF;
write_package[3] = (data & 0xFF);
I am trying to drive a EEPROM Chip 25LC256 with a STM32F469I-DISCO but can't achieve it.
I have tried to make my own function with HAL API bases but apparently something is wrong : I don't know if I write datas on the chip since I can't read it. Let me explain more.
So my chip is a DIP 25LC256 (DS is above is you wish). PINs HOLD and WP of EEPROM are tied to VCC (3.3V). PIN CS is connected to PH6 (ARD_D10 on board) and is managed by the software. PIN SI and PIN SO are respectively connected to PB15 (ARD_D11) and PB14 (ARD_D12) with the right alternate function (GPIO_AF5_SPI2). PIN SCK is also connected to PD3 (ADR_D13).
Here is my SPI configuration code :
EEPROM_StatusTypeDef ConfigurationSPI2(SPI_HandleTypeDef *spi2Handle){
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
GPIO_InitTypeDef gpioInit;
//// SCK [PD3]
gpioInit.Pin = GPIO_PIN_3;
gpioInit.Mode = GPIO_MODE_AF_PP;
gpioInit.Pull = GPIO_PULLDOWN;
gpioInit.Speed = GPIO_SPEED_FREQ_HIGH;
gpioInit.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(GPIOD, &gpioInit);
//// MOSI [PB15]
gpioInit.Pin = GPIO_PIN_15;
gpioInit.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &gpioInit);
//// MISO [PB14]
gpioInit.Pin = GPIO_PIN_14;
gpioInit.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &gpioInit);
//// CS [PH6]
gpioInit.Pin = GPIO_PIN_6;
gpioInit.Mode = GPIO_MODE_OUTPUT_PP;
gpioInit.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOH, &gpioInit);
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, GPIO_PIN_SET);
//// SPI2
__HAL_RCC_SPI2_CLK_ENABLE();
spi2Handle->Instance = SPI2;
spi2Handle->Init.Mode = SPI_MODE_MASTER;
spi2Handle->Init.Direction = SPI_DIRECTION_2LINES;
spi2Handle->Init.DataSize = SPI_DATASIZE_8BIT;
spi2Handle->Init.CLKPolarity = SPI_POLARITY_LOW;
spi2Handle->Init.CLKPhase = SPI_PHASE_1EDGE;
spi2Handle->Init.NSS = SPI_NSS_SOFT;
spi2Handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
spi2Handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
spi2Handle->Init.TIMode = SPI_TIMODE_DISABLE;
spi2Handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE ;
spi2Handle->Init.CRCPolynomial = 7;
if(HAL_SPI_Init(spi2Handle) != HAL_OK){
return EEPROM_ERROR;
}
return EEPROM_OK;
}
And two functions allowing respectively (and theorically) to WRITE and READ into the the chip :
Write Function :
EEPROM_StatusTypeDef WriteEEPROM(SPI_HandleTypeDef *spi2Handle, uint8_t *txBuffer, uint16_t size, uint16_t addr){
uint8_t addrLow = addr & 0xFF;
uint8_t addrHigh = (addr >> 8);
uint8_t wrenInstruction = WREN_EEPROM; // Value : 0x06
uint8_t buffer[32] = {WRITE_EEPROM, addrHigh, addrLow}; //Value : 0x02
for(uint i = 0 ; i < size ; i++){
buffer[3+i] = txBuffer[i];
}
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, RESET);
if(HAL_SPI_Transmit(spi2Handle, &wrenInstruction, 1, TIMEOUT_EEPROM) != HAL_OK){
return EEPROM_ERROR;;
}
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, SET);
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, RESET);
if(HAL_SPI_Transmit(spi2Handle, buffer, (size + 3), TIMEOUT_EEPROM) != HAL_OK){
return EEPROM_ERROR;
}
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, SET);
return EEPROM_OK;
}
Read Function :
EEPROM_StatusTypeDef ReadEEPROM(SPI_HandleTypeDef *spi2Handle, uint8_t *rxBuffer, uint16_t size, uint16_t addr){
uint8_t addrLow = addr & 0xFF;
uint8_t addrHigh = (addr >> 8);
uint8_t txBuffer[3] = {READ_EEPROM, addrHigh, addrLow};
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, RESET);
HAL_SPI_Transmit(spi2Handle, txBuffer, 3, TIMEOUT_EEPROM);
HAL_SPI_Receive(spi2Handle, rxBuffer, size, TIMEOUT_EEPROM);
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, SET);
return EEPROM_OK;
}
I know my function are not very "beautiful" but it was a first attempt. In my main, I have tried in the first place to write into the chip the data "0x05" at the 0x01 adress then to read this data back :
uint8_t bufferEEPROM[1] = {5};
uint8_t bufferEEPROM2[1] = {1};
WriteEEPROM(&spi2Handle, bufferEEPROM, 1, 0x01);
ReadEEPROM(&spi2Handle, bufferEEPROM2, 1, 0x01);
I have an oscilloscope so since it didn't work (monitoring with STM Studio) I visualized the CLK and SI PINs then CLK and SO PINs (can only see two channel at the same time) :
As you can see, with the first picture that shows CLK (yellow) and SI (or MOSI) in blue, I have all the data expected : The WRite ENable instruction then the WRITE instruction. Following the ADDRESS, then the DATA.
After that, the Read Function starts. First the READ instruction and the ADDRESS where I want to fetch the data. The last 8 bits are supposed to be the data stored at the address (0x01 in this case). Something happens on SI PIN but I guess this is because the HAL_SPI_Receive() function actually calls HAL_SPI_TransmitReceive() with my array bufferEEPROM2 as parameter (that's why we can se 0b00000001). And so it is because of my SPI configuration parameter (Full-duplex).
Anyway, theorically I am supposed to see 0b00000101 on SO PIN but as you can see in the second picture.... nothing.
I have tried to change gpioInit.Pull for SO PIN on PULLUP and PULLDOWN but nothing changed. NOPULL is because that's the last thing I have tried.
The thing is I don't know where to start. My transmission seems to work (but is it actually ?). Is there anything wrong with my initialization ? Acutally my main question would be : why I don't receive any data from my EEPROM ?
Many thanks !
Write operations need some time to complete (your datasheet says 5 ms on page 4), during that time no operation other than read status is possible. Try polling the status register with the RDSR (0x05) opcode to find out when it becomes ready (bit 0). You could also check the status (bit 1) before and after issuing WREN to see if it was successful.
So the problem is now solved. Here are the improvements :
There was actually two issues. The first one and certainly the most important is, as berendi stated, a timing issue. In my WRITE function I didn't let the time for the EEPROM to complete its write cycle (5 ms on datasheet). I added the following code line at the end of all my WRITE functions :
HAL_Delay(10); //10 ms wait for the EEPROM to complete the write cycle
The delay value could be less I think if time is preicous (theorically 5ms). I didn't test below 10 ms though. An other thing. With the oscilloscope I also saw that my Chip Select used to went HIGH in the middle of my last clock edge. I could not say if this could also imply some issues since that's a thing I solved in the first place by adding a code line before HAl_Delay(10). All my SPI transmission functions finishes this way now :
while(HAL_GPIO_ReadPin(CLK_PORT, CLK_PIN) == GPIO_PIN_SET){
}
HAL_GPIO_WritePin(CS_PORT, CS_PIN, GPIO_PIN_SET);
HAL_Delay(10);
This way I have the proper pattern and I can write in the EEPROM and read back what I wrote.
NB : A last thing that made me goes deeper into my misunderstanding of the events : since my write functions didn't work, I focused on STATUS REGISTER write and read function (in order to solve this step by step). The write function didn't work either and in fact it was because the WRENbit wasn't set. I though (wrong one) that the fact to write into the STATUS REGISTER didn't ask also to set WREN like the WRITE functions into the memory ask to. Actually, it is also necessary.
Thanks for the help !
I am writing a SD Card low level driver to implement Chan's FATFS System on a Olimex MOD-MP3-X board with a STM32f103rb processor. I'm pretty new to this topic at all and I am no native english speaker, but i hope i can point out my problem.
At first I want to write a function to send the cmd commands via SPI.
So i got this Prototype for the function usage:
static void sd_cmd(uint8_t cmd, uint32_t arg);
//I already found the HAL-command to transmit the data:
HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size);
//But I don't know exactly how put the Argument and the cmd into the data buffer.
//I already tried by creating an array, but this didn't work:
uint8_t buffer[5];
uint8_t buffer[0]= 0x40 | cmd;
uint8_t buffer[1]= arg >> 24;
uint8_t buffer[2]= arg >> 16;
uint8_t buffer[3]= arg >> 8;
uint8_t buffer[4]= arg;
...
HAL_SPI_Transmit_IT(&hspi2, &buffer, 5);