Apache Spark: collect into an array intersections - scala

Suppose a dataframe with two columns: C1 and C2
+---+-----+
|C1 | C2 |
+---+-----+
|A | B |
|C | D |
|A | E |
|E | F |
+---+-----+
My goal is: collect into in array intersections
+--------------+
| intersections|
+--------------+
|[A, B, E, F] |
|[C, D] |
+--------------+
How it can be done good if the dataframe has the large number of rows (~ 1 billion)

Solution is GraphFrame library (https://graphframes.github.io/graphframes/docs/_site/index.html)
DISCLAIMER: tested with Spark 2.4.4 and GraphFrame 0.7.0
import org.apache.spark.sql.{DataFrame, SQLContext}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.sql.expressions.Window
import org.apache.spark.storage.StorageLevel
import scala.collection._
import org.graphframes.GraphFrame
object SparkApp extends App {
val appName = "appName"
val master = "local[*]"
val spark = SparkSession
.builder
.appName(appName)
.master(master)
.getOrCreate
import spark.implicits._
val dataTest =
Seq(
("A", "B"),
("C", "D"),
("A", "E"),
("E", "F")
).toDF("C1", "C2")
// it's mandatory for GraphFrame
spark.sparkContext.setCheckpointDir("/some/path/hdfs/test_checkpoints")
// dataframe to list of vertices and connections list
val graphTest: GraphFrame =
GraphFrame(
dataTest.select('C1 as "id").union(dataTest.select('C2 as "id")).distinct,
dataTest.withColumnRenamed("C1", "src").withColumnRenamed("C2","dst")
)
val graphComponentsTest = graphTest.connectedComponents.run()
val clustersResultTestDF =
graphComponentsTest
.groupBy("component")
.agg(collect_list("id") as "intersections")
clustersResultTestDF.show
}
output is
+--------------+
| intersections|
+--------------+
|[A, B, E, F] |
|[C, D] |
+--------------+

Related

Constructing Spark ML features column with nested arrays

My dataframe, df, has columns comprising 2-dimensional (x,y) data. Combining these columns with VectorAssembler into the 'features' column results in all these pairs being flattened. Is there a way to have these columns represented in their original form i.e. as [[x1,y1],[x2,y2],[x3,y3]] instead of what I am getting: [x1,y1,x2,y2,x3,y3]
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler
val df = Seq((Seq(1.0,2.0), Seq(3.0,4.0), Seq(5.0,6.0)),
(Seq(7.0,8.0), Seq(9.0,10.0), Seq(11.0,12.0))).toDF("f1", "f2", "f3")
//Ref https://stackoverflow.com/a/41091839/4106464
val seqAsVector = udf((xs: Seq[Double]) => Vectors.dense(xs.toArray))
val df_final = df.select(seqAsVector(col("f1")).as("f1"), seqAsVector(col("f2")).as("f2"), seqAsVector(col("f3")).as("f3"))
val assembler = new VectorAssembler().setInputCols(Array("f1","f2","f3")).setOutputCol("features")
val df_out = assembler.transform(df_final)
df.show
df_out.show(false)
// df
//+----------+-----------+------------+
//| f1| f2| f3|
//+----------+-----------+------------+
//|[1.0, 2.0]| [3.0, 4.0]| [5.0, 6.0]|
//|[7.0, 8.0]|[9.0, 10.0]|[11.0, 12.0]|
//+----------+-----------+------------+
// df_out with VectorAssembler
//+---------+----------+-----------+----------------------------+
//|f1 |f2 |f3 |features |
//+---------+----------+-----------+----------------------------+
//|[1.0,2.0]|[3.0,4.0] |[5.0,6.0] |[1.0,2.0,3.0,4.0,5.0,6.0] |
//|[7.0,8.0]|[9.0,10.0]|[11.0,12.0]|[7.0,8.0,9.0,10.0,11.0,12.0]|
//+---------+----------+-----------+----------------------------+
//Desired features column:
//+---------+----------+-----------+----------------------------------+
//|f1 |f2 |f3 |features |
//+---------+----------+-----------+----------------------------------+
//|[1.0,2.0]|[3.0,4.0] |[5.0,6.0] |[[1.0,2.0],[3.0,4.0],[5.0,6.0]] |
//|[7.0,8.0]|[9.0,10.0]|[11.0,12.0]|[[7.0,8.0],[9.0,10.0],[11.0,12.0]]|
//+---------+----------+-----------+----------------------------------+

How write code that creates a Dataset with columns that have the elements of an array column as values and their names being positions?

Input data:
val inputDf = Seq(Seq("a", "b", "c"), Seq("X", "Y", "Z")).toDF
println("Input:")
inputDf.show(false)
Here is how look Input:
+---------+
|value |
+---------+
|[a, b, c]|
|[X, Y, Z]|
+---------+
Here is how look Expected:
+---+---+---+
|0 |1 |2 |
+---+---+---+
|a |b |c |
|X |Y |Z |
+---+---+---+
I tried use code like this:
val ncols = 3
val selectCols = (0 until ncols).map(i => $"arr"(i).as(s"col_$i"))
inputDf
.select(selectCols:_*)
.show()
But I have errors, because I need some :Unit
Another way to create a dataframe ---
df1 = spark.createDataFrame([(1,[4,2, 1]),(4,[3,2])], [ "col2","col4"])
OUTPUT---------
+----+---------+
|col2| col4|
+----+---------+
| 1|[4, 2, 1]|
| 4| [3, 2]|
+----+---------+
package spark
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.col
object ArrayToCol extends App {
val spark = SparkSession.builder()
.master("local")
.appName("DataFrame-example")
.getOrCreate()
import spark.implicits._
val inptDf = Seq(Seq("a", "b", "c"), Seq("X", "Y", "Z")).toDF("value")
val d = inptDf
.withColumn("0", col("value").getItem(0))
.withColumn("1", col("value").getItem(1))
.withColumn("2", col("value").getItem(2))
.drop("value")
d.show(false)
}
// Variant 2
val res = inptDf.select(
$"value".getItem(0).as("col0"),
$"value".getItem(1).as("col1"),
$"value".getItem(2).as("col2")
)
// Variant 3
val res1 = inptDf.select(
col("*") +: (0 until 3).map(i => col("value").getItem(i).as(s"$i")): _*
)
.drop("value")

Add identical rows to a Spark Dataframe using an integer

Assuming the following Dataframe df1 :
df1 :
+---------+--------+-------+
|A |B |C |
+---------+--------+-------+
|toto |tata |titi |
+---------+--------+-------+
I have the N = 3 integer which I want to use in order to create 3 duplicates in the df2 Dataframe using df1 :
df2 :
+---------+--------+-------+
|A |B |C |
+---------+--------+-------+
|toto |tata |titi |
|toto |tata |titi |
|toto |tata |titi |
+---------+--------+-------+
Any ideas ?
From Spark-2.4+ use arrays_zip + array_repeat + explode functions for this case.
val df=Seq(("toto","tata","titi")).toDF("A","B","C")
df.withColumn("arr",explode(array_repeat(arrays_zip(array("A"),array("B"),array("c")),3))).
drop("arr").
show(false)
//or dynamic way
val cols=df.columns.map(x => col(x))
df.withColumn("arr",explode(array_repeat(arrays_zip(array(cols:_*)),3))).
drop("arr").
show(false)
//+----+----+----+
//|A |B |C |
//+----+----+----+
//|toto|tata|titi|
//|toto|tata|titi|
//|toto|tata|titi|
//+----+----+----+
You can use foldLeft along with Dataframe's union
import org.apache.spark.sql.DataFrame
object JoinDataFrames {
def main(args: Array[String]): Unit = {
val spark = Constant.getSparkSess
import spark.implicits._
val df = List(("toto","tata","titi")).toDF("A","B","C")
val N = 3;
val resultDf = (1 until N).foldLeft( df)((dfInner : DataFrame, count : Int) => {
df.union(dfInner)
})
resultDf.show()
}
}

In spark iterate through each column and find the max length

I am new to spark scala and I have following situation as below
I have a table "TEST_TABLE" on cluster(can be hive table)
I am converting that to dataframe
as:
scala> val testDF = spark.sql("select * from TEST_TABLE limit 10")
Now the DF can be viewed as
scala> testDF.show()
COL1|COL2|COL3
----------------
abc|abcd|abcdef
a|BCBDFG|qddfde
MN|1234B678|sd
I want an output like below
COLUMN_NAME|MAX_LENGTH
COL1|3
COL2|8
COL3|6
Is this feasible to do so in spark scala?
Plain and simple:
import org.apache.spark.sql.functions._
val df = spark.table("TEST_TABLE")
df.select(df.columns.map(c => max(length(col(c)))): _*)
You can try in the following way:
import org.apache.spark.sql.functions.{length, max}
import spark.implicits._
val df = Seq(("abc","abcd","abcdef"),
("a","BCBDFG","qddfde"),
("MN","1234B678","sd"),
(null,"","sd")).toDF("COL1","COL2","COL3")
df.cache()
val output = df.columns.map(c => (c, df.agg(max(length(df(s"$c")))).as[Int].first())).toSeq.toDF("COLUMN_NAME", "MAX_LENGTH")
+-----------+----------+
|COLUMN_NAME|MAX_LENGTH|
+-----------+----------+
| COL1| 3|
| COL2| 8|
| COL3| 6|
+-----------+----------+
I think it's good idea to cache input dataframe df to make the computation faster.
Here is one more way to get the report of column names in vertical
scala> val df = Seq(("abc","abcd","abcdef"),("a","BCBDFG","qddfde"),("MN","1234B678","sd")).toDF("COL1","COL2","COL3")
df: org.apache.spark.sql.DataFrame = [COL1: string, COL2: string ... 1 more field]
scala> df.show(false)
+----+--------+------+
|COL1|COL2 |COL3 |
+----+--------+------+
|abc |abcd |abcdef|
|a |BCBDFG |qddfde|
|MN |1234B678|sd |
+----+--------+------+
scala> val columns = df.columns
columns: Array[String] = Array(COL1, COL2, COL3)
scala> val df2 = columns.foldLeft(df) { (acc,x) => acc.withColumn(x,length(col(x))) }
df2: org.apache.spark.sql.DataFrame = [COL1: int, COL2: int ... 1 more field]
scala> df2.select( columns.map(x => max(col(x))):_* ).show(false)
+---------+---------+---------+
|max(COL1)|max(COL2)|max(COL3)|
+---------+---------+---------+
|3 |8 |6 |
+---------+---------+---------+
scala> df3.flatMap( r => { (0 until r.length).map( i => (columns(i),r.getInt(i)) ) } ).show(false)
+----+---+
|_1 |_2 |
+----+---+
|COL1|3 |
|COL2|8 |
|COL3|6 |
+----+---+
scala>
To get the results into Scala collections, say Map()
scala> val result = df3.flatMap( r => { (0 until r.length).map( i => (columns(i),r.getInt(i)) ) } ).as[(String,Int)].collect.toMap
result: scala.collection.immutable.Map[String,Int] = Map(COL1 -> 3, COL2 -> 8, COL3 -> 6)
scala> result
res47: scala.collection.immutable.Map[String,Int] = Map(COL1 -> 3, COL2 -> 8, COL3 -> 6)
scala>

Comparing two array columns in Scala Spark

I have a dataframe of format given below.
movieId1 | genreList1 | genreList2
--------------------------------------------------
1 |[Adventure,Comedy] |[Adventure]
2 |[Animation,Drama,War] |[War,Drama]
3 |[Adventure,Drama] |[Drama,War]
and trying to create another flag column which shows whether genreList2 is a subset of genreList1.
movieId1 | genreList1 | genreList2 | Flag
---------------------------------------------------------------
1 |[Adventure,Comedy] | [Adventure] |1
2 |[Animation,Drama,War] | [War,Drama] |1
3 |[Adventure,Drama] | [Drama,War] |0
I have tried this:
def intersect_check(a: Array[String], b: Array[String]): Int = {
if (b.sameElements(a.intersect(b))) { return 1 }
else { return 2 }
}
def intersect_check_udf =
udf((colvalue1: Array[String], colvalue2: Array[String]) => intersect_check(colvalue1, colvalue2))
data = data.withColumn("Flag", intersect_check_udf(col("genreList1"), col("genreList2")))
But this throws error
org.apache.spark.SparkException: Failed to execute user defined function.
P.S.: The above function (intersect_check) works for Arrays.
We can define an udf that calculates the length of the intersection between the two Array columns and checks whether it is equal to the length of the second column. If so, the second array is a subset of the first one.
Also, the inputs of your udf need to be class WrappedArray[String], not Array[String] :
import scala.collection.mutable.WrappedArray
import org.apache.spark.sql.functions.col
val same_elements = udf { (a: WrappedArray[String],
b: WrappedArray[String]) =>
if (a.intersect(b).length == b.length){ 1 }else{ 0 }
}
df.withColumn("test",same_elements(col("genreList1"),col("genreList2")))
.show(truncate = false)
+--------+-----------------------+------------+----+
|movieId1|genreList1 |genreList2 |test|
+--------+-----------------------+------------+----+
|1 |[Adventure, Comedy] |[Adventure] |1 |
|2 |[Animation, Drama, War]|[War, Drama]|1 |
|3 |[Adventure, Drama] |[Drama, War]|0 |
+--------+-----------------------+------------+----+
Data
val df = List((1,Array("Adventure","Comedy"), Array("Adventure")),
(2,Array("Animation","Drama","War"), Array("War","Drama")),
(3,Array("Adventure","Drama"),Array("Drama","War"))).toDF("movieId1","genreList1","genreList2")
Here is the solution converting using subsetOf
val spark =
SparkSession.builder().master("local").appName("test").getOrCreate()
import spark.implicits._
val data = spark.sparkContext.parallelize(
Seq(
(1,Array("Adventure","Comedy"),Array("Adventure")),
(2,Array("Animation","Drama","War"),Array("War","Drama")),
(3,Array("Adventure","Drama"),Array("Drama","War"))
)).toDF("movieId1", "genreList1", "genreList2")
val subsetOf = udf((col1: Seq[String], col2: Seq[String]) => {
if (col2.toSet.subsetOf(col1.toSet)) 1 else 0
})
data.withColumn("flag", subsetOf(data("genreList1"), data("genreList2"))).show()
Hope this helps!
One solution may be to exploit spark array builtin functions: genreList2 is subset of genreList1 if the intersection between the two is equal to genreList2. In the code below a sort_array operation has been added to avoid a mismatch between two arrays with different ordering but same elements.
val spark = {
SparkSession
.builder()
.master("local")
.appName("test")
.getOrCreate()
}
import spark.implicits._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
val df = Seq(
(1, Array("Adventure","Comedy"), Array("Adventure")),
(2, Array("Animation","Drama","War"), Array("War","Drama")),
(3, Array("Adventure","Drama"), Array("Drama","War"))
).toDF("movieId1", "genreList1", "genreList2")
df
.withColumn("flag",
sort_array(array_intersect($"genreList1",$"genreList2"))
.equalTo(
sort_array($"genreList2")
)
.cast("integer")
)
.show()
The output is
+--------+--------------------+------------+----+
|movieId1| genreList1| genreList2|flag|
+--------+--------------------+------------+----+
| 1| [Adventure, Comedy]| [Adventure]| 1|
| 2|[Animation, Drama...|[War, Drama]| 1|
| 3| [Adventure, Drama]|[Drama, War]| 0|
+--------+--------------------+------------+----+
This can also work here and it does not use udf
import spark.implicits._
val data = Seq(
(1,Array("Adventure","Comedy"),Array("Adventure")),
(2,Array("Animation","Drama","War"),Array("War","Drama")),
(3,Array("Adventure","Drama"),Array("Drama","War"))
).toDF("movieId1", "genreList1", "genreList2")
data
.withColumn("size",size(array_except($"genreList2",$"genreList1")))
.withColumn("flag",when($"size" === lit(0), 1) otherwise(0))
.show(false)
Spark 3.0+ (forall)
forall($"genreList2", x => array_contains($"genreList1", x)).cast("int")
Full example:
val df = Seq(
(1, Seq("Adventure", "Comedy"), Seq("Adventure")),
(2, Seq("Animation", "Drama","War"), Seq("War", "Drama")),
(3, Seq("Adventure", "Drama"), Seq("Drama", "War"))
).toDF("movieId1", "genreList1", "genreList2")
val df2 = df.withColumn("Flag", forall($"genreList2", x => array_contains($"genreList1", x)).cast("int"))
df2.show()
// +--------+--------------------+------------+----+
// |movieId1| genreList1| genreList2|Flag|
// +--------+--------------------+------------+----+
// | 1| [Adventure, Comedy]| [Adventure]| 1|
// | 2|[Animation, Drama...|[War, Drama]| 1|
// | 3| [Adventure, Drama]|[Drama, War]| 0|
// +--------+--------------------+------------+----+