The course I'm taking currently won't allow us to use the predicate boolean=? in our assignments and concept checks and says that there is an easier way to get the same result. I still don't get how to get to that result with the information we were just taught (and or not operators). How do make an alternative to boolean=?
Here is an alternative:
(define (bool=? x y)
(or (and x y)
(and (not x) (not y))))
Or ... you could use equal?.
Considering this comment from other answer
The question is: Write a function general-true? that consumes a single value x that can be of any type. The function produces true if x is either the Boolean true or the integer 1 and false for all other values. Use only the Boolean operations and, or, and not, the function =, and any type predicates you need.
maybe you need this:
(define (general-true? x)
(or (and (boolean? x) x)
(and (integer? x) (= x 1))))
Examples:
> (general-true? #true)
#t
> (general-true? 1)
#t
> (general-true? 0)
#f
> (general-true? #false)
#f
> (general-true? '(1 2 3 4))
#f
Related
CL-USER> (a-sum 0 3)
->> 6
I wrote this program :
(defun a-sum (x y)
(if (and (> x -1) (> y -1))
(do ((i 0 (1+ i))
(sum 0)
(num x))
((equal i (+ (- y x) 1)))
(setq sum (+ sum num))
(setq num (+ num 1))
sum)
(print " NOPE")))
put if I run it in the terminal it returns nil and not the answer stated above;
can someone help with the problem so it returns the value then Boolean.
DO,DO* Syntax
The entry for DO,DO* says that the syntax is as follows:
do ({var | (var [init-form [step-form]])}*)
(end-test-form result-form*)
declaration*
{tag | statement}*
The body is used as a list of statements and no intermediate value in this body is used as the result form of the do form. Instead, the do form evaluates as the last expression in result-form*, which defaults to nil.
(do ((i 0 (1+ i))
(sum 0)
(num x))
((equal i (+ (- y x) 1))
;;; RESULT FORMS HERE
)
(setq sum (+ sum num)) ;; (*)
(setq num (+ num 1)) ;; (*)
sum ;; (*)
)
All the expressions marked commented (*) above are used for side-effects only: the result of their evaluation is unused and discarded.
Problem statement
It is not clear to me what Σpi=ni means, and your code does not seem to compute something that could be expressed as that mathematical expression.
One red flag for example is that if (+ (- y x) 1) is negative (i.e. if y < x-1, for example y=1,x=3), then your loop never terminates because i, which is positive or null, will never be equal to the other term which is negative.
I would try to rewrite the problem statement more clearly, and maybe try first a recursive version of your algorithm (whichever is easier to express).
Remarks
Please indent/format your code.
Instead of adding setq statements in the body, try to see if you can define them in the iteration clauses of the loop (since I'm not sure what you are trying to achieve, the following example is only a rewrite of your code):
(do ((i 0 (1+ i))
(sum 0 (+ sum num)
(num x (1+ num))
(... sum))
Consider what value(s) a function returns. It's the value of the last form evaluated. In your case, that appears to be a do or maybe a setq or print (It's difficult to read as it's formatted now, and I don't have question edit privileges).
In short, the form that's returning the value for the function looks to be one evaluated for side-effects instead of returning a value.
Consider the following definition:
(define foo
(lambda (x y)
(if (= x y)
0
(+ x (foo (+ x 1) y)))))
What is the test expression? (write the actual expression, not its value)
I would think it is just (if (= x y) but the MIT 6.001 On Line Tutor is not accepting that answer.
The test would be:
(= x y)
That's the expression that actually returns a boolean value, and the behaviour of the if conditional expression depends on it - if it's #t (or in general: any non-false value) the consequent part will be executed: 0. Only if it's #f the alternative part will be executed: (+ x (foo (+ x 1) y)).
I want to calculate the sum of digits of a number in Scheme. It should work like this:
>(sum-of-digits 123)
6
My idea is to transform the number 123 to string "123" and then transform it to a list '(1 2 3) and then use (apply + '(1 2 3)) to get 6.
but it's unfortunately not working like I imagined.
>(string->list(number->string 123))
'(#\1 #\2 #\3)
Apparently '(#\1 #\2 #\3) is not same as '(1 2 3)... because I'm using language racket under DrRacket, so I can not use the function like char->digit.
Can anyone help me fix this?
An alternative method would be to loop over the digits by using modulo. I'm not as used to scheme syntax, but thanks to #bearzk translating my Lisp here's a function that works for non-negative integers (and with a little work could encompass decimals and negative values):
(define (sum-of-digits x)
(if (= x 0) 0
(+ (modulo x 10)
(sum-of-digits (/ (- x (modulo x 10)) 10)))))
Something like this can do your digits thing arithmetically rather than string style:
(define (digits n)
(if (zero? n)
'()
(cons (remainder n 10) (digits2 (quotient n 10))))
Anyway, idk if its what you're doing but this question makes me think Project Euler. And if so, you're going to appreciate both of these functions in future problems.
Above is the hard part, this is the rest:
(foldr + (digits 12345) 0)
OR
(apply + (digits 1234))
EDIT - I got rid of intLength above, but in case you still want it.
(define (intLength x)
(define (intLengthP x c)
(if (zero? x)
c
(intLengthP (quotient x 10) (+ c 1))
)
)
(intLengthP x 0))
Those #\1, #\2 things are characters. I hate to RTFM you, but the Racket docs are really good here. If you highlight string->list in DrRacket and hit F1, you should get a browser window with a bunch of useful information.
So as not to keep you in the dark; I think I'd probably use the "string" function as the missing step in your solution:
(map string (list #\a #\b))
... produces
(list "a" "b")
A better idea would be to actually find the digits and sum them. 34%10 gives 4 and 3%10 gives 3. Sum is 3+4.
Here's an algorithm in F# (I'm sorry, I don't know Scheme):
let rec sumOfDigits n =
if n<10 then n
else (n%10) + sumOfDigits (n/10)
This works, it builds on your initial string->list solution, just does a conversion on the list of characters
(apply + (map (lambda (d) (- (char->integer d) (char->integer #\0)))
(string->list (number->string 123))))
The conversion function could factored out to make it a little more clear:
(define (digit->integer d)
(- (char->integer d) (char->integer #\0)))
(apply + (map digit->integer (string->list (number->string 123))))
(define (sum-of-digits num)
(if (< num 10)
num
(+ (remainder num 10) (sum-of-digits (/ (- num (remainder num 10)) 10)))))
recursive process.. terminates at n < 10 where sum-of-digits returns the input num itself.
What is the exclusive or functions in scheme? I've tried xor and ^, but both give me an unbound local variable error.
Googling found nothing.
I suggest you use (not (equal? foo bar)) if not equals works. Please note that there may be faster comparators for your situiation such as eq?
As far as I can tell from the R6RS (the latest definition of scheme), there is no pre-defined exclusive-or operation. However, xor is equivalent to not equals for boolean values so it's really quite easy to define on your own if there isn't a builtin function for it.
Assuming the arguments are restricted to the scheme booleans values #f and #t,
(define (xor a b)
(not (boolean=? a b)))
will do the job.
If you mean bitwise xor of two integers, then each Scheme has it's own name (if any) since it's not in any standard. For example, PLT has these bitwise functions, including bitwise-xor.
(Uh, if you talk about booleans, then yes, not & or are it...)
Kind of a different style of answer:
(define xor
(lambda (a b)
(cond
(a (not b))
(else b))))
Reading SRFI-1 shed a new light upon my answer. Forget efficiency and simplicity concerns or even testing! This beauty does it all:
(define (xor . args)
(odd? (count (lambda (x) (eqv? x #t)) args)))
Or if you prefer:
(define (true? x) (eqv? x #t))
(define (xor . args) (odd? (count true? args)))
(define (xor a b)
(and
(not (and a b))
(or a b)))
Since xor could be used with any number of arguments, the only requirement is that the number of true occurences be odd. It could be defined roughly this way:
(define (true? x) (eqv? x #t))
(define (xor . args)
(odd? (length (filter true? args))))
No argument checking needs to be done since any number of arguments (including none) will return the right answer.
However, this simple implementation has efficiency problems: both length and filter traverse the list twice; so I thought I could remove both and also the other useless predicate procedure "true?".
The value odd? receives is the value of the accumulator (aka acc) when args has no remaining true-evaluating members. If true-evaluating members exist, repeat with acc+1 and the rest of the args starting at the next true value or evaluate to false, which will cause acc to be returned with the last count.
(define (xor . args)
(odd? (let count ([args (memv #t args)]
[acc 0])
(if args
(count (memv #t (cdr args))
(+ acc 1))
acc))))
> (define (xor a b)(not (equal? (and a #t)(and b #t))))
> (xor 'hello 'world)
$9 = #f
> (xor #f #f)
$10 = #f
> (xor (> 1 100)(< 1 100))
$11 = #t
I revised my code recently because I needed 'xor in scheme and found out it wasn't good enough...
First, my earlier definition of 'true? made the assumption that arguments had been tested under a boolean operation. So I change:
(define (true? x) (eqv? #t))
... for:
(define (true? x) (not (eqv? x #f)))
... which is more like the "true" definition of 'true? However, since 'xor returns #t if its arguments have an 'odd? number of "true" arguments, testing for an even number of false cases is equivalent. So here's my revised 'xor:
(define (xor . args)
(even? (count (lambda (x) (eqv? x #f)) args)))
I have a list of elements '(a b c) and I want to find if (true or false) x is in it, where x can be 'a or 'd, for instance. Is there a built in function for this?
If you need to compare using one of the build in equivalence operators, you can use memq, memv, or member, depending on whether you want to look for equality using eq?, eqv?, or equal?, respectively.
> (memq 'a '(a b c))
'(a b c)
> (memq 'b '(a b c))
'(b c)
> (memq 'x '(a b c))
#f
As you can see, these functions return the sublist starting at the first matching element if they find an element. This is because if you are searching a list that may contain booleans, you need to be able to distinguish the case of finding a #f from the case of not finding the element you are looking for. A list is a true value (the only false value in Scheme is #f) so you can use the result of memq, memv, or member in any context expecting a boolean, such as an if, cond, and, or or expression.
> (if (memq 'a '(a b c))
"It's there! :)"
"It's not... :(")
"It's there! :)"
What is the difference between the three different functions? It's based on which equivalence function they use for comparison. eq? (and thus memq) tests if two objects are the same underlying object; it is basically equivalent to a pointer comparison (or direct value comparison in the case of integers). Thus, two strings or lists that look the same may not be eq?, because they are stored in different locations in memory. equal? (and thus member?) performs a deep comparison on lists and strings, and so basically any two items that print the same will be equal?. eqv? is like eq? for almost anything but numbers; for numbers, two numbers that are numerically equivalent will always be eqv?, but they may not be eq? (this is because of bignums and rational numbers, which may be stored in ways such that they won't be eq?)
> (eq? 'a 'a)
#t
> (eq? 'a 'b)
#f
> (eq? (list 'a 'b 'c) (list 'a 'b 'c))
#f
> (equal? (list 'a 'b 'c) (list 'a 'b 'c))
#t
> (eqv? (+ 1/2 1/3) (+ 1/2 1/3))
#t
(Note that some behavior of the functions is undefined by the specification, and thus may differ from implementation to implementation; I have included examples that should work in any R5RS compatible Scheme that implements exact rational numbers)
If you need to search for an item in a list using an equivalence predicate different than one of the built in ones, then you may want find or find-tail from SRFI-1:
> (find-tail? (lambda (x) (> x 3)) '(1 2 3 4 5 6))
'(4 5 6)
Here's one way:
> (cond ((member 'a '(a b c)) '#t) (else '#f))
#t
> (cond ((member 'd '(a b c)) '#t) (else '#f))
#f
member returns everything starting from where the element is, or #f. A cond is used to convert this to true or false.
You are looking for "find"
Basics - The simplest case is just (find Entry List), usually used as a predicate: "is Entry in List?". If it succeeds in finding the element in question, it returns the first matching element instead of just "t". (Taken from second link.)
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node145.html
-or-
http://www.apl.jhu.edu/~hall/Lisp-Notes/Higher-Order.html
I don't know if there is a built in function, but you can create one:
(define (occurrence x lst)
(if (null? lst) 0
(if (equal? x (car lst)) (+ 1 (occurrence x (cdr lst)))
(occurrence x (cdr lst))
)
)
)
Ỳou will get in return the number of occurrences of x in the list. you can extend it with true or false too.
(define (member? x list)
(cond ((null? list) #f)
((equal? x (car list)) #t)
(else (member? x (cdr list)))))
The procedure return #t (true) or #f (false)
(member? 10 '(4 2 3))
output is #f