Is RSocket a fifth generation reactive framework? - reactive-programming

As per David Karnok's classification 5th generation reactive frameworks are described as below
Reactive-Streams will need extensions to support reactive IO operations in the form of bi-directional sequences (or channels).
operator-fusion by David Karnok's
RSocket definition goes as below
RSocket is an application protocol providing Reactive Streams semantics over an asynchronous, binary boundary.
It enables the following symmetric interaction models via async message passing over a single connection:
request/response (stream of 1)
request/stream (finite/infinite stream of many)
fire-and-forget (no response)
channel (bi-directional streams)
So Is RSocket a fifth generation reactive framework?

Simply put, if you want to follow David Karnok's definition of what a fifth generation reactive framework would be, then the answer is yes:
RSocket extends the reactive semantics to the wire level making distributed systems aware of each others capacities and allowing to move the flow control, back pressure, and lease to the protocol level without any custom addition to remediate a situation where consumer cannot keep up with the pace of the produce such as buffering, throttling...

Related

Advantages of using Spring's KafkaListener over Apache's KafkaConsumer?

I understand that KafkaConsumer is a client from Apache's Kafka library, which is pollable on demand, and is therefore in an infinite loop that sends out a heartbeat based on an interval. KafkaListener is an annotation applied to a method so that Spring Kafka will invoke it to process a message.
That said, I'm not sure what the design advantages / disadvantages are of either approach. Does one allow for a better or worse consumption pattern, in your opinion? And if so, what is the difference?
See the goals on the project page; essentially it provides a higher level abstraction, taking care of the low level stuff so you can concentrate on the business logic. It uses familiar concepts for Spring users that use other technologies (JMS, RabbitMQ etc).
It generally provides a faster on-ramp for those new to Apache Kafka.

Is it possible to combine REST and messaging for microservices?

We have the first version of an application based on a microservice architecture. We used REST for external and internal communication.
Now we want to switch to AP from CP (CAP theorem)* and use a message bus for communication between microservices.
There is a lot of information about how to create an event bus based on Kafka, RabbitMQ, etc.
But I can't find any best practices for a combination of REST and messaging.
For example, you create a car service and you need to add different car components. It would make more sense, for this purpose, to use REST with POST requests. On the other hand, a service for booking a car would be a good task for an event-based approach.
Do you have a similar approach when you have a different dictionary and business logic capabilities? How do you combine them? Just support both approaches separately? Or unify them in one approach?
* for the first version, we agreed to choose consistency and partition tolerance. But now availability becomes more important for us.
Bottom line up front: You're looking for Command Query Responsibility Segregation; which defines an architectural pattern for breaking up responsibilities from querying for data to asking for a process to be run. The short answer is you do not want to mix the two in either a query or a process in a blocking fashion. The rest of this answer will go into detail as to why, and the three different ways you can do what you're trying to do.
This answer is a short form of the experience I have with Microservices. My bona fides: I've created Microservices topologies from scratch (and nearly zero knowledge) and as they say hit every branch on the way down.
One of the benefits of starting from zero-knowledge is that the first topology I created used a mixture of intra-service synchronous and blocking (HTTP) communication (to retrieve data needed for an operation from the service that held it), and message queues + asynchronous events to run operations (for Commands).
I'll define both terms:
Commands: Telling a service to do something. For instance, "Run ETL Batch job". You expect there to be an output from this; but it is necessarily a process that you're not going to be able to reliably wait on. A command has side-effects. Something will change because of this action (If nothing happens and nothing changes, then you haven't done anything).
Query: Asking a service for data that it holds. This data may have been there because of a Command given, but asking for data should not have side effects. No Command operations should need to be run because of a Query received.
Anyway, back to the topology.
Level 1: Mixed HTTP and Events
For this first topology, we mixed Synchronous Queries with Asynchronous Events being emitted. This was... problematic.
Message Buses are by their nature observable. One setting in RabbitMQ, or an Event Source, and you can observe all events in the system. This has some good side-effects, in that when something happens in the process you can typically figure out what events led to that state (if you follow an event-driven paradigm + state machines).
HTTP Calls are not observable without inspecting network traffic or logging those requests (which itself has problems, so we're going to start with "not feasible" in normal operations). Therefore if you mix a message based process and HTTP calls, you're going to have holes where you can't tell what's going on. You'll have spots where due to a network error your HTTP call didn't return data, and your services didn't continue the process because of that. You'll also need to hook up Retry/Circuit Breaker patterns for your HTTP calls to ensure they at least try a few times, but then you have to differentiate between "Not up because it's down", and "Not up because it's momentarily busy".
In short, mixing the two methods for a Command Driven process is not very resilient.
Level 2: Events define RPC/Internal Request/Response for data; Queries are External
In step two of this maturity model, you separate out Commands and Queries. Commands should use an event driven system, and queries should happen through HTTP. If you need the results of a query for a Command, then you issue a message and use a Request/Response pattern over your message bus.
This has benefits and problems too.
Benefits-wise your entire Command is now observable, even as it hops through multiple services. You can also replay processes in the system by rerunning events, which can be useful in tracking down problems.
Problems-wise now some of your events look a lot like queries; and you're now recreating the beautiful HTTP and REST semantics available in HTTP for messages; and that's not terribly fun or useful. As an example, a 404 tells you there's no data in REST. For a message based event, you have to recreate those semantics (There's a good Youtube conference talk on the subject I can't find but a team tried to do just that with great pain).
However, your events are now asynchronous and non-blocking, and every service can be refactored to a state-machine that will respond to a given event. Some caveats are those events should contain all the data needed for the operation (which leads to messages growing over the course of a process).
Your queries can still use HTTP for external communication; but for internal command/processes, you'd use the message bus.
I don't recommend this approach either (though it's a step up from the first approach). I don't recommend it because of the impurity your events start to take on, and in a microservices system having contracts be the same throughout the system is important.
Level 3: Producers of Data emit data as events. Consumers Record data for their use.
The third step in the maturity model (and we were on our way to that paradigm when I departed from the project) is for services that produce data to issue events when that data is produced. That data is then jotted down by services listening for those events, and those services will use that (could be?) stale data to conduct their operations. External customers still use HTTP; but internally you emit events when new data is produced, and each service that cares about that data will store it to use when it needs to. This is the crux of Michael Bryzek's talk Designing Microservices Architecture the Right way. Michael Bryzek is the CTO of Flow.io, a white-label e-commerce company.
If you want a deeper answer along with other issues at play, I'll point you to my blog post on the subject.

Kafka Streams and RPC: is calling REST service in map() operator considered an anti-pattern?

The naive approach for implementing the use case of enriching an incoming stream of events stored in Kafka with reference data - is by calling in map() operator an external service REST API that provides this reference data, for each incoming event.
eventStream.map((key, event) -> /* query the external service here, then return the enriched event */)
Another approach is to have second events stream with reference data and store it in KTable that will be a lightweight embedded "database" then join main event stream with it.
KStream<String, Object> eventStream = builder.stream(..., "event-topic");
KTable<String, Object> referenceDataTable = builder.table(..., "reference-data-topic");
KTable<String, Object> enrichedEventStream = eventStream
.leftJoin(referenceDataTable , (event, referenceData) -> /* return the enriched event */)
.map((key, enrichedEvent) -> new KeyValue<>(/* new key */, enrichedEvent)
.to("enriched-event-topic", ...);
Can the "naive" approach be considered an anti-pattern? Can the "KTable" approach be recommended as the preferred one?
Kafka can easily manage millions of messages per minute. Service that is called from the map() operator should be capable of handling high load too and also highly-available. These are extra requirements for the service implementation. But if the service satisfies these criteria can the "naive" approach be used?
Yes, it is ok to do RPC inside Kafka Streams operations such as map() operation. You just need to be aware of the pros and cons of doing so, see below. Also, you should do any such RPC calls synchronously from within your operations (I won't go into details here why; if needed, I'd suggest to create a new question).
Pros of doing RPC calls from within Kafka Streams operations:
Your application will fit more easily into an existing architecture, e.g. one where the use of REST APIs and request/response paradigms is common place. This means that you can make more progress quickly for a first proof-of-concept or MVP.
The approach is, in my experience, easier to understand for many developers (particularly those who are just starting out with Kafka) because they are familiar with doing RPC calls in this manner from their past projects. Think: it helps to move gradually from request-response architectures to event-driven architectures (powered by Kafka).
Nothing prevents you from starting with RPC calls and request-response, and then later migrating to a more Kafka-idiomatic approach.
Cons:
You are coupling the availability, scalability, and latency/throughput of your Kafka Streams powered application to the availability, scalability, and latency/throughput of the RPC service(s) you are calling. This is relevant also for thinking about SLAs.
Related to the previous point, Kafka and Kafka Streams scale very well. If you are running at large scale, your Kafka Streams application might end up DDoS'ing your RPC service(s) because the latter probably can't scale as much as Kafka. You should be able to judge pretty easily whether or not this is a problem for you in practice.
An RPC call (like from within map()) is a side-effect and thus a black box for Kafka Streams. The processing guarantees of Kafka Streams do not extend to such side effects.
Example: Kafka Streams (by default) processes data based on event-time (= based on when an event happened in the real world), so you can easily re-process old data and still get back the same results as when the old data was still new. But the RPC service you are calling during such reprocessing might return a different response than "back then". Ensuring the latter is your responsibility.
Example: In the case of failures, Kafka Streams will retry operations, and it will guarantee exactly-once processing (if enabled) even in such situations. But it can't guarantee, by itself, that an RPC call you are doing from within map() will be idempotent. Ensuring the latter is your responsibility.
Alternatives
In case you are wondering what other alternatives you have: If, for example, you are doing RPC calls for looking up data (e.g. for enriching an incoming stream of events with side/context information), you can address the downsides above by making the lookup data available in Kafka directly. If the lookup data is in MySQL, you can setup a Kafka connector to continuously ingest the MySQL data into a Kafka topic (think: CDC). In Kafka Streams, you can then read the lookup data into a KTable and perform the enrichment of your input stream via a stream-table join.
I suspect most of the advice you hear from the internet is along the lines of, "OMG, if this REST call takes 200ms, how wil I ever process 100,000 Kafka messages per second to keep up with my demand?"
Which is technically true: even if you scale your servers up for your REST service, if responses from this app routinely take 200ms - because it talks to a server 70ms away (speed of light is kinda slow, if that server is across the continent from you...) and the calling microservice takes 130ms even if you measure right at the source....
With kstreams the problem may be worse than it appears. Maybe you get 100,000 messages a second coming into your stream pipeline, but some kstream operator flatMaps and that operation in your app creates 2 messages for every one object... so now you really have 200,000 messages a second crashing through your REST server.
BUT maybe you're using Kstreams in an app that has 100 messages a second, or you can partition your data so that you get a message per partition maybe even just once a second. In that case, you might be fine.
Maybe your Kafka data just needs to go somewhere else: ie the end of the stream is back into a Good Ol' RDMS. In which case yes, there's some careful balancing there on the best way to deal with potentially "slow" systems, while making sure you don't DDOS yourself, while making sure you can work your way out of a backlog.
So is it an anti-pattern? Eh, probably, if your Kafka cluster is LinkedIn size. Does it matter for you? Depends on how many messages/second you need to drive, how fast your REST service really is, how efficiently it can scale (ie your new kstreams pipeline suddenly delivers 5x the normal traffic to it...)

Is Communicating Sequential Processes [CSP] an alternative to the actor model in Scala?

In a 1978 Paper by Hoare we have an idea called Communicating Sequential Processes. This is used by Go, Occam, and in Clojure in core.async.
Is it possible to use CSP as an alternative to the Actor Model in Scala? (I'm seeing JCSP but I'm wondering if this is the only option, if it is mature, and if anyone uses it).
EDIT - I'm also seeing Communicating Scala Objects as an alternative to JCSP in Scala. But those of these seem to be tied to real threads - which seems to miss one of the benefits of CSP, being to get away from the memory resource cost of keeping large numbers of threads always active.
You should consult this document, but in general there are a few differences:
Channels are anonymous while actors have identities
In CSP, you use channels to transmit messages, but actors can directly contact each other.
In CSP communication is done in the form of rendezvous (i.e., it is synchronous). Actors support asynchronous message passing.
And yes, it is possible to use CSP as an alternative to the Actor model if these differences are acceptable in your position. I don't have any experience with JCSP but I wouldn't recommend using that specific library (the reason is as I see there aren't any activity in the project since 2011).

What is Event Driven Concurrency?

I am starting to learn Scala and functional programming. I was reading the book !Programming scala: Tackle Multi-Core Complexity on the Java Virtual Machine". Upon the first chapter I've seen the word Event-Driven concurrency and Actor model. Before I continue reading this book I want to have an idea about Event-Driven concurrency or Actor Model.
What is Event-Driven concurrency, and how is it related to Actor Model?
An Event Driven programming model involves registering code to be run when a given event fires. An example is, instead of calling a method that returns some data from a database:
val user = db.getUser(1)
println(user.name)
You could instead register a callback to be run when the data is ready:
db.getUser(1, u => println(u.name))
In the first example, no concurrency was happening; The current thread would block until db.getUser(1) returned data from the database. In the second example db.getUser would return immediately and carry on executing the next code in the program. In parallel to this, the callback u => println(u.name) will be executed at some point in the future.
Some people prefer the second approach as it doesn't mean memory hungry Threads are needlessly sat around waiting for slow I/O to return.
The Actor Model is an example of how Event-Driven concepts can be used to help the programmer easily write concurrent programs.
From a super high level, Actors are objects that define a series of Event Driven message handlers that get fired when the Actor receives messages. In Akka, each instance of an Actor is single Threaded, however when many of these Actors are put together they create a system with concurrency.
For example, Actor A could send messages to Actor B and C in parallel. Actor B and C could fire messages back to Actor A. Actor A would have message handlers to receive these messages and behave as desired.
To learn more about the Actor model I would recommend reading the Akka documentation. It is really well written: http://doc.akka.io/docs/akka/2.1.4/
There is also lot's of good documentation around the web about Event Driven Concurrency that us much more detailed than what I've written here. http://berb.github.io/diploma-thesis/original/055_events.html
Theon's answer provides a good modern overview. I'd like to add some historical perspective.
Tony Hoare and Robert Milner both developed mathematical algebra for analysing concurrent systems (Communicating Sequential Processes, CSP, and Communicating Concurrent Systems, CCS). Both of these look like heavy mathematics to most of us but the practical application is relatively straightforward. CSP led directly to the Occam programming language amongst others, with Go being the newest example. CCS led to Pi calculus and the mobility of communicating channel ends, a feature that is part of Go and was added to Occam in the last decade or so.
CSP models concurrency purely by considering automomous entities ('processes', v.lightweight things like green threads) interacting simply by event exchange. The medium for passing events is along channels. Processes may have to deal with several inputs or outputs and they do this by selecting the event that is ready first. The events usually carry data from the sender to the receiver.
A principle feature of the CSP model is that a pair of processes engage in communication only when both are ready - in practical terms this leads to what is usually called 'synchronous' communication. However, the actual implementations (Go, Occam, Akka) allow channels to be buffered (the normal state in Akka) so that the lock-step exchange of events is often actually decoupled instead.
So in summary, an event-driven CSP-based system is really a data-flow network of processes connected by channels.
Besides the CSP interpretation of event-driven, there have been others. An important example is the 'event-wheel' approach, once popular for modelling concurrent systems whilst actually having a single processing thread. Such systems handle events by putting them into a processing queue and dealing with them due course, usually via a callback. Java Swing's event processing engine is a good example. There were others, e.g. for time-based simulation engines. One might think of the Javascript / NodeJS model as fitting into this category as well.
So in summary, an event-wheel was a way to express concurrency but without parallelism.
The irony of this is that the two approaches I've described above are both described as event driven but what they mean by event driven is different in each case. In one case, hardware-like entities are wired together; in the other, almost all actions are executed by callbacks. The CSP approach claims to be scalable because it's fully composable; it's naturally adept at parallel execution also. If there are any reasons to favour one over the other, these are probably it.
To understand the answer to this you have to look at event concurrency from the OS layer up. First you start with threads which are the smallest section of code that can be run by the OS and eventually deal with I/O, timing and other kinds of events.
The OS groups threads into a process in which they share the same memory, protection and security permissions. Above that layer you have user programs which typically make I/O requests that are handled by user libraries.
The I/O libraries handle these requests in one of two ways. Unix-like systems use a "reactor" model in which the library registers I/O handlers for all the different types of I/O and events in the system. These handlers are activated when I/O is ready on a specific device. Windows-like systems use an I/O completion model in which I/O requests are made and a callback is triggered when the request is complete.
Both of these models require a significant amount of overhead to manage overall program state if you were to use them directly. However some programming tasks (web apps / services) lend themselves to a seemingly more direct implementation if you use an event model directly, but you still need to manage all of that program state. In order to track program logic across dispatches of several related events you have to manually track state and pass it around to the callbacks. This tracking structure is usually called a state context or baton. As you might imagine passing batons around all over the place to numerous seemingly unrelated handlers makes for some extremely hard to read and spaghetti-like code. It's also a pain to write and debug -- especially when you're trying to handle the synchronization of various concurrent paths of execution. You start getting into Futures and then the code becomes really difficult to read.
One well-known event processing library is call libuv. It's a portable event loop that integrates Unix's reactor model with Windows' completion model into a single model usually called a "proactor". Its the event handler that drives NodeJS.
Which brings us to communicating sequential processes.
https://en.wikipedia.org/wiki/Communicating_sequential_processes
Rather than writing asynchronous I/O dispatch and synchronization code using one or more concurrency models (and their often competing conventions), we flip the problem on its head. We use a "coroutine" which looks like normal sequential code.
A simple example is a coroutine that receives a single byte over an event channel from another coroutine that sends a single byte. This effectively synchronizes I/O producer and consumer because the writer/sender has to wait for a reader/receiver and vice-versa. While either process is waiting they explicitly yield execution to other processes. When a coroutine yields, its scoped program state is saved on a stack frame thus saving you from the confusion of managing multi-layered baton state in an event loop.
Using applications built on these event channels we can construct arbitrary, reusable, concurrent logic and the algorithms no longer look like spaghetti code. In pure CSP systems if you write to a channel and there is no reader, you will be blocked. The channel endpoints are known via handles internally to the program.
Actor systems are different in a couple of ways. First, the endpoints are the actor threads and they are named and known external to the mainline program. The second difference is that sends and receives on these channels are buffered. In other words if you send a message to an actor and there isn't one listening or its busy you aren't blocked until one reads from their input channel. Other differences exist like one actor can publish to two different actors concurrently.
As you might guess Actor systems can easily be built from CSP systems. There are other details like waiting for specific event patterns and selecting from them, but that's the basics.
I hope that clarifies things a bit.
Other constructs can be built from these ideas. Various programming systems (Go, Erlang, etc) include CSP implementations within them. Operating systems like Inferno and Node9 use CSPs and Channels as the basis of their distributed computing model.
Go: https://en.wikipedia.org/wiki/Go_(programming_language)
Erlang: https://en.wikipedia.org/wiki/Erlang_(programming_language)
Inferno: https://en.wikipedia.org/wiki/Inferno_(operating_system)
Node9: https://github.com/jvburnes/node9