Summary: Combining multiple rows to columns for a user
Input DF:
Id
group
A1
A2
B1
B2
1
Alpha
1
2
null
null
1
AlphaNew
6
8
null
null
2
Alpha
7
4
null
null
2
Beta
null
null
3
9
Note: The group values are dynamic
Expected Output DF:
Id
Alpha_A1
Alpha_A2
AlphaNew_A1
AlphaNew_A2
Beta_B1
Beta_B2
1
1
2
6
8
null
null
2
7
4
null
null
3
9
Attempted Solution:
I thought of making a json of non-null columns for each row, then a group by and concat_list of maps. Then I can explode the json to get the expected output.
But I am stuck at the stage of a nested json. Here is my code
vcols = df.columns[2:]
df\
.withColumn('json', F.to_json(F.struct(*vcols)))\
.groupby('id')\
.agg(
F.to_json(
F.collect_list(
F.create_map('group', 'json')
)
)
).alias('json')
Id
json
1
[{Alpha: {A1:1, A2:2}}, {AlphaNew: {A1:6, A2:8}}]
2
[{Alpha: {A1:7, A2:4}}, {Beta: {B1:3, B2:9}}]
What I am trying to get:
Id
json
1
[{Alpha_A1:1, Alpha_A2:2, AlphaNew_A1:6, AlphaNew_A2:8}]
2
[{Alpha_A1:7, Alpha_A2:4, Beta_B1:3, Beta_B2:9}]
I'd appreciate any help. I'm also trying to avoid UDFs as my true dataframe's shape is quite big
There's definitely a better way to do this but I continued your to json experiment.
Using UDFs:
After you get something like [{Alpha: {A1:1, A2:2}}, {AlphaNew: {A1:6, A2:8}}] you could create a UDF to flatten the dict. But since it's a JSON string you'll have to parse it to dict and then back again to JSON.
After that you would like to explode and pivot the table but that's not possible with JSON strings, so you have to use F.from_json with defined schema. That will give you MapType which you can explode and pivot.
Here's an example:
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from collections import MutableMapping
import json
from pyspark.sql.types import (
ArrayType,
IntegerType,
MapType,
StringType,
)
def flatten_dict(d, parent_key="", sep="_"):
items = []
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, MutableMapping):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
def flatten_groups(data):
result = []
for item in json.loads(data):
result.append(flatten_dict(item))
return json.dumps(result)
if __name__ == "__main__":
spark = SparkSession.builder.master("local").appName("Test").getOrCreate()
data = [
(1, "Alpha", 1, 2, None, None),
(1, "AlphaNew", 6, 8, None, None),
(2, "Alpha", 7, 4, None, None),
(2, "Beta", None, None, 3, 9),
]
columns = ["Id", "group", "A1", "A2", "B1", "B2"]
df = spark.createDataFrame(data, columns)
vcols = df.columns[2:]
df = (
df.withColumn("json", F.struct(*vcols))
.groupby("id")
.agg(F.to_json(F.collect_list(F.create_map("group", "json"))).alias("json"))
)
# Flatten groups
flatten_groups_udf = F.udf(lambda x: flatten_groups(x))
schema = ArrayType(MapType(StringType(), IntegerType()))
df = df.withColumn("json", F.from_json(flatten_groups_udf(F.col("json")), schema))
# Explode and pivot
df = df.select(F.col("id"), F.explode(F.col("json")).alias("json"))
df = (
df.select("id", F.explode("json"))
.groupby("id")
.pivot("key")
.agg(F.first("value"))
)
At the end dataframe looks like:
+---+-----------+-----------+--------+--------+-------+-------+
|id |AlphaNew_A1|AlphaNew_A2|Alpha_A1|Alpha_A2|Beta_B1|Beta_B2|
+---+-----------+-----------+--------+--------+-------+-------+
|1 |6 |8 |1 |2 |null |null |
|2 |null |null |7 |4 |3 |9 |
+---+-----------+-----------+--------+--------+-------+-------+
Without UDFs:
vcols = df.columns[2:]
df = (
df.withColumn("json", F.to_json(F.struct(*vcols)))
.groupby("id")
.agg(
F.collect_list(
F.create_map(
"group", F.from_json("json", MapType(StringType(), IntegerType()))
)
).alias("json")
)
)
df = df.withColumn("json", F.explode(F.col("json")).alias("json"))
df = df.select("id", F.explode(F.col("json")).alias("root", "value"))
df = df.select("id", "root", F.explode(F.col("value")).alias("sub", "value"))
df = df.select(
"id", F.concat(F.col("root"), F.lit("_"), F.col("sub")).alias("name"), "value"
)
df = df.groupBy(F.col("id")).pivot("name").agg(F.first("value"))
Result:
+---+-----------+-----------+--------+--------+-------+-------+
|id |AlphaNew_A1|AlphaNew_A2|Alpha_A1|Alpha_A2|Beta_B1|Beta_B2|
+---+-----------+-----------+--------+--------+-------+-------+
|1 |6 |8 |1 |2 |null |null |
|2 |null |null |7 |4 |3 |9 |
+---+-----------+-----------+--------+--------+-------+-------+
I found a slightly better way than the json approach:
Stack the input dataframe value columns A1, A2,B1, B2,.. as rows
So the structure would look like id, group, sub, value where sub has the column name like A1, A2, B1, B2 and the value column has the value associated
Filter out the rows that have value as null
And, now we are able to pivot by the group. Since the null value rows are removed, we wont have the initial issue of the pivot making extra columns
import pyspark.sql.functions as F
data = [
(1, "Alpha", 1, 2, None, None),
(1, "AlphaNew", 6, 8, None, None),
(2, "Alpha", 7, 4, None, None),
(2, "Beta", None, None, 3, 9),
]
columns = ["id", "group", "A1", "A2", "B1", "B2"]
df = spark.createDataFrame(data, columns)
# Value columns that need to be stacked
vcols = df.columns[2:]
expr_str = ', '.join([f"'{i}', {i}" for i in vcols])
expr_str = f"stack({len(vcols)}, {expr_str}) as (sub, value)"
df = df\
.selectExpr("id", "group", expr_str)\
.filter(F.col("value").isNotNull())\
.select("id", F.concat("group", F.lit("_"), "sub").alias("group"), "value")\
.groupBy("id")\
.pivot("group")\
.agg(F.first("value"))
df.show()
Result:
+---+-----------+-----------+--------+--------+-------+-------+
| id|AlphaNew_A1|AlphaNew_A2|Alpha_A1|Alpha_A2|Beta_B1|Beta_B2|
+---+-----------+-----------+--------+--------+-------+-------+
| 1| 6| 8| 1| 2| null| null|
| 2| null| null| 7| 4| 3| 9|
+---+-----------+-----------+--------+--------+-------+-------+
Related
Input data:
val inputDf = Seq(Seq("a", "b", "c"), Seq("X", "Y", "Z")).toDF
println("Input:")
inputDf.show(false)
Here is how look Input:
+---------+
|value |
+---------+
|[a, b, c]|
|[X, Y, Z]|
+---------+
Here is how look Expected:
+---+---+---+
|0 |1 |2 |
+---+---+---+
|a |b |c |
|X |Y |Z |
+---+---+---+
I tried use code like this:
val ncols = 3
val selectCols = (0 until ncols).map(i => $"arr"(i).as(s"col_$i"))
inputDf
.select(selectCols:_*)
.show()
But I have errors, because I need some :Unit
Another way to create a dataframe ---
df1 = spark.createDataFrame([(1,[4,2, 1]),(4,[3,2])], [ "col2","col4"])
OUTPUT---------
+----+---------+
|col2| col4|
+----+---------+
| 1|[4, 2, 1]|
| 4| [3, 2]|
+----+---------+
package spark
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.col
object ArrayToCol extends App {
val spark = SparkSession.builder()
.master("local")
.appName("DataFrame-example")
.getOrCreate()
import spark.implicits._
val inptDf = Seq(Seq("a", "b", "c"), Seq("X", "Y", "Z")).toDF("value")
val d = inptDf
.withColumn("0", col("value").getItem(0))
.withColumn("1", col("value").getItem(1))
.withColumn("2", col("value").getItem(2))
.drop("value")
d.show(false)
}
// Variant 2
val res = inptDf.select(
$"value".getItem(0).as("col0"),
$"value".getItem(1).as("col1"),
$"value".getItem(2).as("col2")
)
// Variant 3
val res1 = inptDf.select(
col("*") +: (0 until 3).map(i => col("value").getItem(i).as(s"$i")): _*
)
.drop("value")
I have the following dataframe:
ID Name City
1 Ali swl
2 Sana lhr
3 Ahad khi
4 ABC fsd
And a list of values like (1,2,1):
val nums: List[Int] = List(1, 2, 1)
I want to add these values against ID == 3. So that DataFrame looks like:
ID Name City newCol newCol2 newCol3
1 Ali swl null null null
2 Sana lhr null null null
3 Ahad khi 1 2 1
4 ABC fsd null null null
I wonder if it is possible? Any help will be appreciated. Thanks
Yes, Its possible.
Use when for populating matched values & otherwise for not matched values.
I have used zipWithIndex for making column names unique.
Please check below code.
scala> import org.apache.spark.sql.functions._
scala> val df = Seq((1,"Ali","swl"),(2,"Sana","lhr"),(3,"Ahad","khi"),(4,"ABC","fsd")).toDF("id","name","city") // Creating DataFrame with given sample data.
df: org.apache.spark.sql.DataFrame = [id: int, name: string ... 1 more field]
scala> val nums = List(1,2,1) // List values.
nums: List[Int] = List(1, 2, 1)
scala> val filterData = List(3,4)
scala> spark.time{ nums.zipWithIndex.foldLeft(df)((df,c) => df.withColumn(s"newCol${c._2}",when($"id".isin(filterData:_*),c._1).otherwise(null))).show(false) } // Used zipWithIndex to make column names unique.
+---+----+----+-------+-------+-------+
|id |name|city|newCol0|newCol1|newCol2|
+---+----+----+-------+-------+-------+
|1 |Ali |swl |null |null |null |
|2 |Sana|lhr |null |null |null |
|3 |Ahad|khi |1 |2 |1 |
|4 |ABC |fsd |1 |2 |1 |
+---+----+----+-------+-------+-------+
Time taken: 43 ms
scala>
Firstly you can convert it to DataFrame with single array column and then "decompose" the array column into columns as follows:
import org.apache.spark.sql.functions.{col, lit}
import spark.implicits._
val numsDf =
Seq(nums)
.toDF("nums")
.select(nums.indices.map(i => col("nums")(i).alias(s"newCol$i")): _*)
After that you can use outer join for joining data to numsDf with ID == 3 condition as follows:
val resultDf = data.join(numsDf, data.col("ID") === lit(3), "outer")
resultDf.show() will print:
+---+----+----+-------+-------+-------+
| ID|Name|City|newCol0|newCol1|newCol2|
+---+----+----+-------+-------+-------+
| 1| Ali| swl| null| null| null|
| 2|Sana| lhr| null| null| null|
| 3|Ahad| khi| 1| 2| 3|
| 4| ABC| fsd| null| null| null|
+---+----+----+-------+-------+-------+
Make sure you have added spark.sql.crossJoin.crossJoin.enabled = true option to the spark session:
val spark = SparkSession.builder()
...
.config("spark.sql.crossJoin.enabled", value = true)
.getOrCreate()
This is probably a duplicate, but somehow I have been searching for a long time already:
I want to get the number of nulls per Row in a Spark dataframe. I.e.
col1 col2 col3
null 1 a
1 2 b
2 3 null
Should in the end be:
col1 col2 col3 number_of_null
null 1 a 1
1 2 b 0
2 3 null 1
In a general fashion, I want to get the number of times a certain string or number appears in a spark dataframe row.
I.e.
col1 col2 col3 number_of_ABC
ABC 1 a 1
1 2 b 0
2 ABC ABC 2
I am using Pyspark 2.3.0 and prefer a solution that does not involve SQL syntax. For some reason, I seem not to be able to google this. :/
EDIT: Assume that I have so many columns that I can't list them all.
EDIT2: I explicitely dont want to have a pandas solution.
EDIT3: The solution explained with sums or means does not work as it throws errors:
(data type mismatch: differing types in '((`log_time` IS NULL) + 0)' (boolean and int))
...
isnull(log_time#10) + 0) + isnull(log#11))
In Scala:
val df = List(
("ABC", "1", "a"),
("1", "2", "b"),
("2", "ABC", "ABC")
).toDF("col1", "col2", "col3")
val expected = "ABC"
val complexColumn: Column = df.schema.fieldNames.map(c => when(col(c) === lit(expected), 1).otherwise(0)).reduce((a, b) => a + b)
df.withColumn("countABC", complexColumn).show(false)
Output:
+----+----+----+--------+
|col1|col2|col3|countABC|
+----+----+----+--------+
|ABC |1 |a |1 |
|1 |2 |b |0 |
|2 |ABC |ABC |2 |
+----+----+----+--------+
As stated in pasha701's answer, I resort to map and reduce. Note that I am working on Spark 1.6.x and Python 2.7
Taking your DataFrame as df (and as is)
dfvals = [
(None, "1", "a"),
("1", "2", "b"),
("2", None, None)
]
df = sqlc.createDataFrame(dfvals, ['col1', 'col2', 'col3'])
new_df = df.withColumn('null_cnt', reduce(lambda x, y: x + y,
map(lambda x: func.when(func.isnull(func.col(x)) == 'true', 1).otherwise(0),
df.schema.names)))
Check if the value is Null and assign 1 or 0. Add the result to get the count.
new_df.show()
+----+----+----+--------+
|col1|col2|col3|null_cnt|
+----+----+----+--------+
|null| 1| a| 1|
| 1| 2| b| 0|
| 2|null|null| 2|
+----+----+----+--------+
I created a DataFrame as follows:
import spark.implicits._
import org.apache.spark.sql.functions._
val df = Seq(
(1, List(1,2,3)),
(1, List(5,7,9)),
(2, List(4,5,6)),
(2, List(7,8,9)),
(2, List(10,11,12))
).toDF("id", "list")
val df1 = df.groupBy("id").agg(collect_set($"list").as("col1"))
df1.show(false)
Then I tried to convert the WrappedArray row value to string as follows:
import org.apache.spark.sql.functions._
def arrayToString = udf((arr: collection.mutable.WrappedArray[collection.mutable.WrappedArray[String]]) => arr.flatten.mkString(", "))
val d = df1.withColumn("col1", arrayToString($"col1"))
d: org.apache.spark.sql.DataFrame = [id: int, col1: string]
scala> d.show(false)
+---+----------------------------+
|id |col1 |
+---+----------------------------+
|1 |1, 2, 3, 5, 7, 9 |
|2 |4, 5, 6, 7, 8, 9, 10, 11, 12|
+---+----------------------------+
What I really want is to generate an output like the following:
+---+----------------------------+
|id |col1 |
+---+----------------------------+
|1 |1$2$3, 5$7$ 9 |
|2 |4$5$6, 7$8$9, 10$11$12 |
+---+----------------------------+
How can I achieve this?
You don't need a udf function, a simple concat_ws should do the trick for you as
import org.apache.spark.sql.functions._
val df1 = df.withColumn("list", concat_ws("$", col("list")))
.groupBy("id")
.agg(concat_ws(", ", collect_set($"list")).as("col1"))
df1.show(false)
which should give you
+---+----------------------+
|id |col1 |
+---+----------------------+
|1 |1$2$3, 5$7$9 |
|2 |7$8$9, 4$5$6, 10$11$12|
+---+----------------------+
As usual, udf function should be avoided if inbuilt functions are available since udf function would require serialization and deserialization of column data to primitive types for calculation and from primitives to columns respectively
even more concise you can avoid the withColumn step as
val df1 = df.groupBy("id")
.agg(concat_ws(", ", collect_set(concat_ws("$", col("list")))).as("col1"))
I hope the answer is helpful
I would like to reduce values of a specific column in a dataframe based on a predefined pattern matching categories.
Example:
val df = spark.createDataFrame(Seq(
(1, "apple"),
(2, "banana"),
(3, "avocado"),
(4, "potato"))).toDF("Id", "category")
Id category
1 apple
2 banana
3 avocado
4 potato
Desired output:
val df_reduced = spark.createDataFrame(Seq(
(1, "fruit"),
(2, "fruit"),
(3, "vegetable"),
(4, "vegetable"))).toDF("Id", "category")
Id category
1 fruit
2 fruit
3 vegetable
4 vegetable
This is the solution I came up with:
df.withColumn("category", when(col("category") === "apple", regexp_replace(col("category"), "apple", "fruit"))
.otherwise(when(col("category") === "banana", regexp_replace(col("category"), "banana", "fruit"))
.otherwise(when(col("category") === "avocado", regexp_replace(col("category"), "avocado", "vegetable"))
.otherwise(when(col("category") === "potato", regexp_replace(col("category"), "potato", "vegetable"))
))))
.show
I don't really like this nested when-otherwise approach, so I would like to know: is there a better, more idiomatic solution for this task?
You can create a lookup dataframe as
val lookupDF = spark.createDataFrame(Seq(
("apple", "fruit"),
("banana", "fruit"),
("avocado", "vegetable"),
("potato", "vegetable"))).toDF("category", "category2")
// +--------+---------+
// |category|category2|
// +--------+---------+
// |apple |fruit |
// |banana |fruit |
// |avocado |vegetable|
// |potato |vegetable|
// +--------+---------+
Since the lookup dataframe is definitely going to be small you can use broadcast function for joining
import org.apache.spark.sql.functions._
df.join(broadcast(lookupDF), Seq("category"), "left")
.select(col("Id"), col("category2").as("category"))
.show(false)
which should give you
+---+---------+
|Id |category |
+---+---------+
|1 |fruit |
|2 |fruit |
|3 |vegetable|
|4 |vegetable|
+---+---------+
I hope the answer is helpful
Updated
You've commented
what about missing values? if I have a category in the original df that is not present in the lookup df? I get null, advice on how to tackle it? I would prefer to keep the original value if no match is found in the lookup table, but I am unable to do it with joins
To tackle such case you can use when/otherwise function as
import org.apache.spark.sql.functions._
df.join(broadcast(lookupDF), Seq("category"), "left")
.select(col("Id"), when(col("category2").isNotNull, col("category2")).otherwise(col("category")).as("category"))
.show(false)
I think , you should take help of map and udf like below
import org.apache.spark.sql.functions._
val map=Map("Apple"->"fruit","Mango"->"fruit","potato"->"vegetable","avocado"->"vegetable","Banana"->"fruit")
val replaceUDF=udf((name:String)=>map.getOrElse(name, name))
val outputdf=df.withColumn("new_category", replaceUDF(col("category"))
Sample Output:
+---+--------+------------+
| Id|category|new_category|
+---+--------+------------+
| 1| Apple| fruit|
| 2| Banana| fruit|
| 3| potato| vegetable|
| 4| avocado| vegetable|
| 5| Mango| fruit|
+---+--------+------------+