I've got a Postgres ORDER BY issue with the following table:
em_code name
EM001 AAA
EM999 BBB
EM1000 CCC
To insert a new record to the table,
I select the last record with SELECT * FROM employees ORDER BY em_code DESC
Strip alphabets from em_code usiging reg exp and store in ec_alpha
Cast the remating part to integer ec_num
Increment by one ec_num++
Pad with sufficient zeors and prefix ec_alpha again
When em_code reaches EM1000, the above algorithm fails.
First step will return EM999 instead EM1000 and it will again generate EM1000 as new em_code, breaking the unique key constraint.
Any idea how to select EM1000?
Since Postgres 9.6, it is possible to specify a collation which will sort columns with numbers naturally.
https://www.postgresql.org/docs/10/collation.html
-- First create a collation with numeric sorting
CREATE COLLATION numeric (provider = icu, locale = 'en#colNumeric=yes');
-- Alter table to use the collation
ALTER TABLE "employees" ALTER COLUMN "em_code" type TEXT COLLATE numeric;
Now just query as you would otherwise.
SELECT * FROM employees ORDER BY em_code
On my data, I get results in this order (note that it also sorts foreign numerals):
Value
0
0001
001
1
06
6
13
۱۳
14
One approach you can take is to create a naturalsort function for this. Here's an example, written by Postgres legend RhodiumToad.
create or replace function naturalsort(text)
returns bytea language sql immutable strict as $f$
select string_agg(convert_to(coalesce(r[2], length(length(r[1])::text) || length(r[1])::text || r[1]), 'SQL_ASCII'),'\x00')
from regexp_matches($1, '0*([0-9]+)|([^0-9]+)', 'g') r;
$f$;
Source: http://www.rhodiumtoad.org.uk/junk/naturalsort.sql
To use it simply call the function in your order by:
SELECT * FROM employees ORDER BY naturalsort(em_code) DESC
The reason is that the string sorts alphabetically (instead of numerically like you would want it) and 1 sorts before 9.
You could solve it like this:
SELECT * FROM employees
ORDER BY substring(em_code, 3)::int DESC;
It would be more efficient to drop the redundant 'EM' from your em_code - if you can - and save an integer number to begin with.
Answer to question in comment
To strip any and all non-digits from a string:
SELECT regexp_replace(em_code, E'\\D','','g')
FROM employees;
\D is the regular expression class-shorthand for "non-digits".
'g' as 4th parameter is the "globally" switch to apply the replacement to every occurrence in the string, not just the first.
After replacing every non-digit with the empty string, only digits remain.
This always comes up in questions and in my own development and I finally tired of tricky ways of doing this. I finally broke down and implemented it as a PostgreSQL extension:
https://github.com/Bjond/pg_natural_sort_order
It's free to use, MIT license.
Basically it just normalizes the numerics (zero pre-pending numerics) within strings such that you can create an index column for full-speed sorting au naturel. The readme explains.
The advantage is you can have a trigger do the work and not your application code. It will be calculated at machine-speed on the PostgreSQL server and migrations adding columns become simple and fast.
you can use just this line
"ORDER BY length(substring(em_code FROM '[0-9]+')), em_code"
I wrote about this in detail in this related question:
Humanized or natural number sorting of mixed word-and-number strings
(I'm posting this answer as a useful cross-reference only, so it's community wiki).
I came up with something slightly different.
The basic idea is to create an array of tuples (integer, string) and then order by these. The magic number 2147483647 is int32_max, used so that strings are sorted after numbers.
ORDER BY ARRAY(
SELECT ROW(
CAST(COALESCE(NULLIF(match[1], ''), '2147483647') AS INTEGER),
match[2]
)
FROM REGEXP_MATCHES(col_to_sort_by, '(\d*)|(\D*)', 'g')
AS match
)
I thought about another way of doing this that uses less db storage than padding and saves time than calculating on the fly.
https://stackoverflow.com/a/47522040/935122
I've also put it on GitHub
https://github.com/ccsalway/dbNaturalSort
The following solution is a combination of various ideas presented in another question, as well as some ideas from the classic solution:
create function natsort(s text) returns text immutable language sql as $$
select string_agg(r[1] || E'\x01' || lpad(r[2], 20, '0'), '')
from regexp_matches(s, '(\D*)(\d*)', 'g') r;
$$;
The design goals of this function were simplicity and pure string operations (no custom types and no arrays), so it can easily be used as a drop-in solution, and is trivial to be indexed over.
Note: If you expect numbers with more than 20 digits, you'll have to replace the hard-coded maximum length 20 in the function with a suitable larger length. Note that this will directly affect the length of the resulting strings, so don't make that value larger than needed.
Related
I am working through a quick refresher ('SQL Handbook' by Flavio Copes), and any LIKE or ILIKE query I use with the underscore wildcard returns no results.
The table is created as such:
CREATE TABLE people (
names CHAR(20)
);
INSERT INTO people VALUES ('Joe'), ('John'), ('Johanna'), ('Zoe');
Given this table, I use the following query:
SELECT * FROM people WHERE names LIKE '_oe';
I expect it to return
names
1
Joe
2
Zoe
Instead, it returns
names
The install is PostgreSQL 15 (x64), pgAdmin 4, and PostGIS v3.3.1
Using char(20) means all strings are exactly 20 chars long, being padded with spaces out to that length. The spaces make it not match the pattern, as there is nothing in the pattern to accommodate spaces at the end.
If you make the pattern be '_oe%' it would work. Or better yet, don't use char(20).
I am using PostgreSQL 11.9
I have a table containing a jsonb column with arbitrary number of key-values. There is a requirement when we perform a search to include all values from this column as well. Searching in jsonb is quite slow so my plan is to create a trigger which will extract all the values from the jsonb column:
select t.* from app.t1, jsonb_each(column_jsonb) as t(k,v)
with something like this. And then insert the values in a newly created column in the same table so I can use this column for faster searches.
My question is what type would be most suitable for storing the keys and then searchin within them. Currently the search looks like this:
CASE
WHEN something IS NOT NULL
THEN EXISTS(SELECT value FROM jsonb_each(column_jsonb) WHERE value::text ILIKE search_term)
END
where the search_term is what the user entered from the front end.
This is not going to be pretty, and normalizing the data model would be better.
You can define a function
CREATE FUNCTION jsonb_values_to_string(
j jsonb,
separator text DEFAULT ','
) RETURNS text LANGUAGE sql IMMUTABLE STRICT
AS 'SELECT string_agg(value->>0, $2) FROM jsonb_each($1)';
Then you can query like
WHERE jsonb_values_to_string(column_jsonb, '|') ILIKE 'search_term'
and you can define a trigram index on the left hand side expression to speed it up.
Make sure that you choose a separator that does not occur in the data or the pattern...
Does PostgreSQL support computed / calculated columns, like MS SQL Server? I can't find anything in the docs, but as this feature is included in many other DBMSs I thought I might be missing something.
Eg: http://msdn.microsoft.com/en-us/library/ms191250.aspx
Postgres 12 or newer
STORED generated columns are introduced with Postgres 12 - as defined in the SQL standard and implemented by some RDBMS including DB2, MySQL, and Oracle. Or the similar "computed columns" of SQL Server.
Trivial example:
CREATE TABLE tbl (
int1 int
, int2 int
, product bigint GENERATED ALWAYS AS (int1 * int2) STORED
);
fiddle
VIRTUAL generated columns may come with one of the next iterations. (Not in Postgres 15, yet).
Related:
Attribute notation for function call gives error
Postgres 11 or older
Up to Postgres 11 "generated columns" are not supported.
You can emulate VIRTUAL generated columns with a function using attribute notation (tbl.col) that looks and works much like a virtual generated column. That's a bit of a syntax oddity which exists in Postgres for historic reasons and happens to fit the case. This related answer has code examples:
Store common query as column?
The expression (looking like a column) is not included in a SELECT * FROM tbl, though. You always have to list it explicitly.
Can also be supported with a matching expression index - provided the function is IMMUTABLE. Like:
CREATE FUNCTION col(tbl) ... AS ... -- your computed expression here
CREATE INDEX ON tbl(col(tbl));
Alternatives
Alternatively, you can implement similar functionality with a VIEW, optionally coupled with expression indexes. Then SELECT * can include the generated column.
"Persisted" (STORED) computed columns can be implemented with triggers in a functionally equivalent way.
Materialized views are a related concept, implemented since Postgres 9.3.
In earlier versions one can manage MVs manually.
YES you can!! The solution should be easy, safe, and performant...
I'm new to postgresql, but it seems you can create computed columns by using an expression index, paired with a view (the view is optional, but makes makes life a bit easier).
Suppose my computation is md5(some_string_field), then I create the index as:
CREATE INDEX some_string_field_md5_index ON some_table(MD5(some_string_field));
Now, any queries that act on MD5(some_string_field) will use the index rather than computing it from scratch. For example:
SELECT MAX(some_field) FROM some_table GROUP BY MD5(some_string_field);
You can check this with explain.
However at this point you are relying on users of the table knowing exactly how to construct the column. To make life easier, you can create a VIEW onto an augmented version of the original table, adding in the computed value as a new column:
CREATE VIEW some_table_augmented AS
SELECT *, MD5(some_string_field) as some_string_field_md5 from some_table;
Now any queries using some_table_augmented will be able to use some_string_field_md5 without worrying about how it works..they just get good performance. The view doesn't copy any data from the original table, so it is good memory-wise as well as performance-wise. Note however that you can't update/insert into a view, only into the source table, but if you really want, I believe you can redirect inserts and updates to the source table using rules (I could be wrong on that last point as I've never tried it myself).
Edit: it seems if the query involves competing indices, the planner engine may sometimes not use the expression-index at all. The choice seems to be data dependant.
One way to do this is with a trigger!
CREATE TABLE computed(
one SERIAL,
two INT NOT NULL
);
CREATE OR REPLACE FUNCTION computed_two_trg()
RETURNS trigger
LANGUAGE plpgsql
SECURITY DEFINER
AS $BODY$
BEGIN
NEW.two = NEW.one * 2;
RETURN NEW;
END
$BODY$;
CREATE TRIGGER computed_500
BEFORE INSERT OR UPDATE
ON computed
FOR EACH ROW
EXECUTE PROCEDURE computed_two_trg();
The trigger is fired before the row is updated or inserted. It changes the field that we want to compute of NEW record and then it returns that record.
PostgreSQL 12 supports generated columns:
PostgreSQL 12 Beta 1 Released!
Generated Columns
PostgreSQL 12 allows the creation of generated columns that compute their values with an expression using the contents of other columns. This feature provides stored generated columns, which are computed on inserts and updates and are saved on disk. Virtual generated columns, which are computed only when a column is read as part of a query, are not implemented yet.
Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for columns what a view is for tables.
CREATE TABLE people (
...,
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm * 2.54) STORED
);
db<>fiddle demo
Well, not sure if this is what You mean but Posgres normally support "dummy" ETL syntax.
I created one empty column in table and then needed to fill it by calculated records depending on values in row.
UPDATE table01
SET column03 = column01*column02; /*e.g. for multiplication of 2 values*/
It is so dummy I suspect it is not what You are looking for.
Obviously it is not dynamic, you run it once. But no obstacle to get it into trigger.
Example on creating an empty virtual column
,(SELECT *
From (values (''))
A("virtual_col"))
Example on creating two virtual columns with values
SELECT *
From (values (45,'Completed')
, (1,'In Progress')
, (1,'Waiting')
, (1,'Loading')
) A("Count","Status")
order by "Count" desc
I have a code that works and use the term calculated, I'm not on postgresSQL pure tho we run on PADB
here is how it's used
create table some_table as
select category,
txn_type,
indiv_id,
accum_trip_flag,
max(first_true_origin) as true_origin,
max(first_true_dest ) as true_destination,
max(id) as id,
count(id) as tkts_cnt,
(case when calculated tkts_cnt=1 then 1 else 0 end) as one_way
from some_rando_table
group by 1,2,3,4 ;
A lightweight solution with Check constraint:
CREATE TABLE example (
discriminator INTEGER DEFAULT 0 NOT NULL CHECK (discriminator = 0)
);
Does PostgreSQL support computed / calculated columns, like MS SQL Server? I can't find anything in the docs, but as this feature is included in many other DBMSs I thought I might be missing something.
Eg: http://msdn.microsoft.com/en-us/library/ms191250.aspx
Postgres 12 or newer
STORED generated columns are introduced with Postgres 12 - as defined in the SQL standard and implemented by some RDBMS including DB2, MySQL, and Oracle. Or the similar "computed columns" of SQL Server.
Trivial example:
CREATE TABLE tbl (
int1 int
, int2 int
, product bigint GENERATED ALWAYS AS (int1 * int2) STORED
);
fiddle
VIRTUAL generated columns may come with one of the next iterations. (Not in Postgres 15, yet).
Related:
Attribute notation for function call gives error
Postgres 11 or older
Up to Postgres 11 "generated columns" are not supported.
You can emulate VIRTUAL generated columns with a function using attribute notation (tbl.col) that looks and works much like a virtual generated column. That's a bit of a syntax oddity which exists in Postgres for historic reasons and happens to fit the case. This related answer has code examples:
Store common query as column?
The expression (looking like a column) is not included in a SELECT * FROM tbl, though. You always have to list it explicitly.
Can also be supported with a matching expression index - provided the function is IMMUTABLE. Like:
CREATE FUNCTION col(tbl) ... AS ... -- your computed expression here
CREATE INDEX ON tbl(col(tbl));
Alternatives
Alternatively, you can implement similar functionality with a VIEW, optionally coupled with expression indexes. Then SELECT * can include the generated column.
"Persisted" (STORED) computed columns can be implemented with triggers in a functionally equivalent way.
Materialized views are a related concept, implemented since Postgres 9.3.
In earlier versions one can manage MVs manually.
YES you can!! The solution should be easy, safe, and performant...
I'm new to postgresql, but it seems you can create computed columns by using an expression index, paired with a view (the view is optional, but makes makes life a bit easier).
Suppose my computation is md5(some_string_field), then I create the index as:
CREATE INDEX some_string_field_md5_index ON some_table(MD5(some_string_field));
Now, any queries that act on MD5(some_string_field) will use the index rather than computing it from scratch. For example:
SELECT MAX(some_field) FROM some_table GROUP BY MD5(some_string_field);
You can check this with explain.
However at this point you are relying on users of the table knowing exactly how to construct the column. To make life easier, you can create a VIEW onto an augmented version of the original table, adding in the computed value as a new column:
CREATE VIEW some_table_augmented AS
SELECT *, MD5(some_string_field) as some_string_field_md5 from some_table;
Now any queries using some_table_augmented will be able to use some_string_field_md5 without worrying about how it works..they just get good performance. The view doesn't copy any data from the original table, so it is good memory-wise as well as performance-wise. Note however that you can't update/insert into a view, only into the source table, but if you really want, I believe you can redirect inserts and updates to the source table using rules (I could be wrong on that last point as I've never tried it myself).
Edit: it seems if the query involves competing indices, the planner engine may sometimes not use the expression-index at all. The choice seems to be data dependant.
One way to do this is with a trigger!
CREATE TABLE computed(
one SERIAL,
two INT NOT NULL
);
CREATE OR REPLACE FUNCTION computed_two_trg()
RETURNS trigger
LANGUAGE plpgsql
SECURITY DEFINER
AS $BODY$
BEGIN
NEW.two = NEW.one * 2;
RETURN NEW;
END
$BODY$;
CREATE TRIGGER computed_500
BEFORE INSERT OR UPDATE
ON computed
FOR EACH ROW
EXECUTE PROCEDURE computed_two_trg();
The trigger is fired before the row is updated or inserted. It changes the field that we want to compute of NEW record and then it returns that record.
PostgreSQL 12 supports generated columns:
PostgreSQL 12 Beta 1 Released!
Generated Columns
PostgreSQL 12 allows the creation of generated columns that compute their values with an expression using the contents of other columns. This feature provides stored generated columns, which are computed on inserts and updates and are saved on disk. Virtual generated columns, which are computed only when a column is read as part of a query, are not implemented yet.
Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for columns what a view is for tables.
CREATE TABLE people (
...,
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm * 2.54) STORED
);
db<>fiddle demo
Well, not sure if this is what You mean but Posgres normally support "dummy" ETL syntax.
I created one empty column in table and then needed to fill it by calculated records depending on values in row.
UPDATE table01
SET column03 = column01*column02; /*e.g. for multiplication of 2 values*/
It is so dummy I suspect it is not what You are looking for.
Obviously it is not dynamic, you run it once. But no obstacle to get it into trigger.
Example on creating an empty virtual column
,(SELECT *
From (values (''))
A("virtual_col"))
Example on creating two virtual columns with values
SELECT *
From (values (45,'Completed')
, (1,'In Progress')
, (1,'Waiting')
, (1,'Loading')
) A("Count","Status")
order by "Count" desc
I have a code that works and use the term calculated, I'm not on postgresSQL pure tho we run on PADB
here is how it's used
create table some_table as
select category,
txn_type,
indiv_id,
accum_trip_flag,
max(first_true_origin) as true_origin,
max(first_true_dest ) as true_destination,
max(id) as id,
count(id) as tkts_cnt,
(case when calculated tkts_cnt=1 then 1 else 0 end) as one_way
from some_rando_table
group by 1,2,3,4 ;
A lightweight solution with Check constraint:
CREATE TABLE example (
discriminator INTEGER DEFAULT 0 NOT NULL CHECK (discriminator = 0)
);
Say I have a table like posts, which has typical columns like id, body, created_at. I'd like to generate a unique string with the creation of each post, for use in something like a url shortener. So maybe a 10-character alphanumeric string. It needs to be unique within the table, just like a primary key.
Ideally there would be a way for Postgres to handle both of these concerns:
generate the string
ensure its uniqueness
And they must go hand-in-hand, because my goal is to not have to worry about any uniqueness-enforcing code in my application.
I don't claim the following is efficient, but it is how we have done this sort of thing in the past.
CREATE FUNCTION make_uid() RETURNS text AS $$
DECLARE
new_uid text;
done bool;
BEGIN
done := false;
WHILE NOT done LOOP
new_uid := md5(''||now()::text||random()::text);
done := NOT exists(SELECT 1 FROM my_table WHERE uid=new_uid);
END LOOP;
RETURN new_uid;
END;
$$ LANGUAGE PLPGSQL VOLATILE;
make_uid() can be used as the default for a column in my_table. Something like:
ALTER TABLE my_table ADD COLUMN uid text NOT NULL DEFAULT make_uid();
md5(''||now()::text||random()::text) can be adjusted to taste. You could consider encode(...,'base64') except some of the characters used in base-64 are not URL friendly.
All existing answers are WRONG because they are based on SELECT while generating unique index per table record. Let us assume that we need unique code per record while inserting: Imagine two concurrent INSERTs are happening same time by miracle (which happens very often than you think) for both inserts same code was generated because at the moment of SELECT that code did not exist in table. One instance will INSERT and other will fail.
First let us create table with code field and add unique index
CREATE TABLE my_table
(
code TEXT NOT NULL
);
CREATE UNIQUE INDEX ON my_table (lower(code));
Then we should have function or procedure (you can use code inside for trigger also) where we 1. generate new code, 2. try to insert new record with new code and 3. if insert fails try again from step 1
CREATE OR REPLACE PROCEDURE my_table_insert()
AS $$
DECLARE
new_code TEXT;
BEGIN
LOOP
new_code := LOWER(SUBSTRING(MD5(''||NOW()::TEXT||RANDOM()::TEXT) FOR 8));
BEGIN
INSERT INTO my_table (code) VALUES (new_code);
EXIT;
EXCEPTION WHEN unique_violation THEN
END;
END LOOP;
END;
$$ LANGUAGE PLPGSQL;
This is guaranteed error free solution not like other solutions on this thread
Use a Feistel network. This technique works efficiently to generate unique random-looking strings in constant time without any collision.
For a version with about 2 billion possible strings (2^31) of 6 letters, see this answer.
For a 63 bits version based on bigint (9223372036854775808 distinct possible values), see this other answer.
You may change the round function as explained in the first answer to introduce a secret element to have your own series of strings (not guessable).
The easiest way probably to use the sequence to guarantee uniqueness
(so after the seq add a fix x digit random number):
CREATE SEQUENCE test_seq;
CREATE TABLE test_table (
id bigint NOT NULL DEFAULT (nextval('test_seq')::text || (LPAD(floor(random()*100000000)::text, 8, '0')))::bigint,
txt TEXT
);
insert into test_table (txt) values ('1');
insert into test_table (txt) values ('2');
select id, txt from test_table;
However this will waste a huge amount of records. (Note: the max bigInt is 9223372036854775807 if you use 8 digit random number at the end, you can only have 922337203 records. Thou 8 digit is probably not necessary. Also check the max number for your programming environment!)
Alternatively you can use varchar for the id and even convert the above number with to_hex() or change to base36 like below (but for base36, try to not expose it to customer, in order to avoid some funny string showing up!):
PostgreSQL: Is there a function that will convert a base-10 int into a base-36 string?
Check out a blog by Bruce. This gets you part way there. You will have to make sure it doesn't already exist. Maybe concat the primary key to it?
Generating Random Data Via Sql
"Ever need to generate random data? You can easily do it in client applications and server-side functions, but it is possible to generate random data in sql. The following query generates five lines of 40-character-length lowercase alphabetic strings:"
SELECT
(
SELECT string_agg(x, '')
FROM (
SELECT chr(ascii('a') + floor(random() * 26)::integer)
FROM generate_series(1, 40 + b * 0)
) AS y(x)
)
FROM generate_series(1,5) as a(b);
Use primary key in your data. If you really need alphanumeric unique string, you can use base-36 encoding. In PostgreSQL you can use this function.
Example:
select base36_encode(generate_series(1000000000,1000000010));
GJDGXS
GJDGXT
GJDGXU
GJDGXV
GJDGXW
GJDGXX
GJDGXY
GJDGXZ
GJDGY0
GJDGY1
GJDGY2