I am trying to extend a symbol sequence with a prefix in lisp:
(A B C) => (pfx:A pfx:B pfx:C)
In order to do so I am trying the following:
(mapcar (lambda (arg) (concatenate 'pfx: arg) ) '(a b))
But to no avail.
Can someone give me a hint?
Thanks,
Daniel
To create a symbol in a package, use the INTERN function:
(mapcar (lambda (arg) (intern (symbol-name arg) 'pfx)) '(a b))
This assumes you've already created the PFX package.
Related
I'm trying to call a function (lambda) stored within an alist. Below is a small snippet that demonstrates what I'm trying to do:
(defvar *db* '((:add (lambda (a b)
(+ a b)))
(:sub (lambda (a b)
(- a b)))))
(defun perform-operation-on-numbers (operation a b)
"Performs specified operation on the supplied numbers."
(let ((func (second (find operation
*db*
:key #'car))))
;; TODO: Call `func` on `a` and `b`
(print func)))
(perform-operation-on-numbers :add 1 2)
No matter what I do, not even funcall is able to let me call the lambda stored against :add. How should I reference the retrieved lambda as a lambda?
Your use of quote lead to your inability to use funcall.
Look:
(setf *mydb* '((:add #'+)
(:sub #'-)))
;; ((:ADD #'+) (:SUB #'-))
I can't use funcall. But:
(setf *mydb* (list (cons :add #'+)
(cons :sub #'-)))
;; ((:ADD . #<FUNCTION +>) (:SUB . #<FUNCTION ->))
;;
;; ^^^^ "FUNCTION" ? That's better! <----------
;;
I can (funcall (cdr (first *MYDB*)) 2)
Then the succinct notation is with back-quote and comma.
As pointed out by other answers, you are manipulating code as data, where the forms below (lambda ...) are unevaluated. But even with your data:
(defvar *db* '((:add (lambda (a b)
(+ a b)))
(:sub (lambda (a b)
(- a b)))))
You can use funcall or apply, if you first use COERCE:
If the result-type is function, and object is a lambda expression, then the result is a closure of object in the null lexical environment.
For example, let's access the form associated with :add:
CL-USER> (second (assoc :add *db*))
(LAMBDA (A B) (+ A B))
The value is an unevaluated form.
You can coerce it to a function:
CL-USER> (coerce (second (assoc :add *db*)) 'function)
#<FUNCTION (LAMBDA (A B)) {536B988B}>
Maybe you want to walk the terms to check that the lambda are only using a restricted set of operations, in which case it makes sense to keep them as data. But at some point you'll want to turn these code snippets to actual functions, and you can do that with coerce:
CL-USER> (defvar *db-fns*
(loop
for (n c) in *db*
collect (list n (coerce c 'function))))
*DB-FNS*
Here you compute the functions once, and can reuse them later instead of calling coerce each time.
CL-USER> *db-fns*
((:ADD #<FUNCTION (LAMBDA (A B)) {536B9B5B}>)
(:SUB #<FUNCTION (LAMBDA (A B)) {536B9C0B}>))
(it is equivalent to calling eval on the lambda form)
That's not a function: it's a list beginning (lambda ...). If you want a function have a function, for instance by
(defvar *db* `((:add ,(lambda (a b)
(+ a b)))
(:sub ,(lambda (a b)
(- a b)))))
or, better, don't wrap the thing in some useless baggage:
(defvar *db* `((:add ,#'+
(:sub ,#'-))
I need to write the lisp macro in scheme (please on hygienic macros and syntax-rules etc) that will have function call and Alist as argument
I want function and macro that call that function to have syntax like this:
(foo '(10 (a (lambda () (display "10")) b (lambda () (display "20"))))
or macro without quotes.
My last code is working, but not sure if this is how you suppose to write function/macro like this. It seems that I need double backquote but don't know how to write it. (I'm right now reading On Lips by Paul Graham and he said that double backquote is very hard and only need by macros defining macros, but It seems that this is what I need).
(define (foo expr)
`(list ,(car expr)
(,(string->symbol "quasiquote") ,(pair-map (lambda (a b)
(cons (symbol->string a)
(list 'unquote b)))
(cadr expr)))))
(define-macro (bar expr)
(foo expr))
(define xx (bar (10 (a 20 b (lambda () (display "x") (newline))))))
;; (list 10 `((a . ,20) (b . ,(lambda () (display "x") (newline))))
(define bfn (cdr (assoc "b" (cadr xx)))))
(bfn)
;; "x"
and here is definition of pair-map
(define (pair-map fn seq-list)
"(seq-map fn list)
Function call fn argument for pairs in a list and return combined list with
values returned from function fn. It work like the map but take two items from list"
(let iter ((seq-list seq-list) (result '()))
(if (null? seq-list)
result
(if (and (pair? seq-list) (pair? (cdr seq-list)))
(let* ((first (car seq-list))
(second (cadr seq-list))
(value (fn first second)))
(if (null? value)
(iter (cddr seq-list) result)
(iter (cddr seq-list) (cons value result))))))))
with (string->symbol "quasiquote") I was able not to use double backquote, can this be written with double backquote/quasiquote? How this should look like?
I'm asking if this can be written different way so I can fix few issues in my own lisp interpreter (not sure if is working correctly but it seems that this final version works the same in guile).
I came up with shorter quasiquote version, but still it require inserting symbols:
(define (foo expr)
`(list ,(car expr)
(,'quasiquote ,(pair-map (lambda (a b)
`(,(symbol->string a) . (,'unquote ,b)))
(cadr expr)))))
I have macro that I've written in 2010, it was for managing structures like in Common Lips using Alists (here is whole file including functions https://jcubic.pl/struct.txt).
(define-macro (defstruct name . fields)
"Macro implementing structures in guile based on assoc list."
(let ((names (map (lambda (symbol) (gensym)) fields))
(struct (gensym))
(field-arg (gensym)))
`(if (not (every-unique ',fields))
(error 'defstruct "Fields must be unique")
(begin
(define (,(make-name name) ,#names)
(map cons ',fields (list ,#names)))
,#(map (lambda (field)
`(define (,(make-getter name field) ,struct)
(cdr (assq ',field ,struct)))) fields)
,#(map (lambda (field)
`(define (,(make-setter name field) ,struct ,field-arg)
(assq-set! ,struct ',field ,field-arg)
,field-arg)) fields)
(define (,(make-predicate name) ,struct)
(and (struct? ,struct)
(let ((result #t))
(for-each (lambda (x y)
(if (not (eq? x y)) (set! result #f)))
',fields
(map car ,struct))
result)))))))
It was working fine. I've recently updated this macro for my LIPS in JavaScript (it's based on scheme) and when I call it, it was returning false and wanted to know if this is how it would work in guile. But it turns out it don't work in guile at all. It shows this error:
While compiling expression: ERROR: Syntax error: unknown location:
definition in expression context, where definitions are not allowed,
in form (define (make-point #{ g746}# #{ g747}#) (map cons (quote (x
y)) (list #{ g746}# #{ g747}#))
Why I've got this error and how to fix it, so it work in guile again? I was long ago I don't remember how I was testing this code but opening guile using load function or copy paste the code into interpreter all give same error.
I'm using guile 2.0.14 on GNU/Linux.
PS: I prefer to use lisp macros IMO they are superior to weird scheme hygienic macros.
It looks like modern guile scheme does not see the begin in the if as a valid option to start a new definition context. This is perhaps a bug or better alignment of the scheme spec donough. But the following example code shows the technique to fix your code for more recent guile (you might need to create define-values as it is a more recent addition to guile. P.S. using lisps macros in guile is a clludge and it will get you into trouble if you plan to scheme a lot, the macros is like the parens, if you get used to it will feel natural.
Here is the code,
(define-macro (defstruct name . fields)
"Macro implementing structures in guile based on assoc list."
(let* ((names (map (lambda (symbol) (gensym)) fields))
(struct (gensym))
(field-arg (gensym))
(sname (make-name name))
(predname (make-predicate name))
(getnames (map (lambda (f) (make-getter name f)) fields))
(setnames (map (lambda (f) (make-setter name f)) fields)))
`(define-values (,sname ,predname ,#getnames ,#setnames)
(if (not (every-unique ',fields))
(error 'defstruct "Fields must be unique")
(let ()
(define (,sname ,#names)
(map cons ',fields (list ,#names)))
,#(map (lambda (field)
`(define (,(make-getter name field) ,struct)
(cdr (assq ',field ,struct)))) fields)
,#(map (lambda (field)
`(define (,(make-setter name field) ,struct ,field-arg)
(assq-set! ,struct ',field ,field-arg)
,field-arg)) fields)
(define (,predname ,struct)
(and (struct? ,struct)
(let ((result #t))
(for-each (lambda (x y)
(if (not (eq? x y)) (set! result #f)))
',fields
(map car ,struct))
result)))
(values ,sname ,predname ,#getnames ,#setnames))))))
Here is a version of define-values (look at the code after #' to see what it does)
(define-syntax define-values
(lambda (x)
(syntax-case x ()
((_ (f ...) code ...)
(with-syntax (((ff ...) (generate-temporaries #'(f ...))))
#'(begin
(define f #f)
...
(call-with-values (lambda () code ...)
(lambda (ff ...)
(set! f ff)
...))))))))
I am trying to define some helper functions to quickly jump to different projects from within emacs. I started by defining a macro as follows
(defmacro project-alias (name path)
`(defun ,name ()
(interactive)
(cd ,path)))
And this works great I can (project-alias foo "~/bar") no problem. The problem comes when I try and apply this macro over a list of tuples.
(setq projects '((foo . "~/foo")
(bar . "~/bar")))
(dolist (p projects)
(project-alias (car p) (cdr p)))
The above code errors with
Debugger entered--Lisp error: (wrong-type-argument symbolp (car p))
defalias((car p) (lambda nil (interactive) (cd (cdr p))))
I have tried passing the first argument in as a string and calling intern to get the symbol representation out with no joy, and I've also tried defining my macro to accept the string form and that doesn't work either
What am I doing wrong?
If your use of the macro involves evaluating sexps to produce the name and path, then it needs to evaluate the sexps:
(defmacro project-alias (name path)
`(defun ,(eval name) () (interactive) (cd ,(eval path))))
Alternatively, use a function:
(defun project-alias (name path)
(eval `(defun ,name () (interactive) (cd ,path))))
You could do either
(defun project-alias-f (name path)
(eval `(defun ,name ()
(interactive)
(cd ,path))))
(dolist (p projects)
(project-alias-f (car p) (cdr p)))
or
(dolist (p projects)
(eval `(project-alias ,(car p) ,(cdr p))))
Macro arguments are passed un-evaluated. (Macros could not otherwise do what they can do.)
So your arguments are literally the forms (car p) and (cdr p) (as opposed to, for instance, foo and "~/foo").
Here's another take on it, with no macros nor eval:
;; -*- lexical-binding:t -*-
(defun project-alias-f (name filename)
(defalias name (lambda () (interactive) (cd filename)))
(dolist (p projects)
(project-alias-f (car p) (cdr p)))
This is not an answer to your macro problem, but an alternative solution to your desire to jump between projects.
In my init.el file, I have (amongst other things)
(set-register ?A '(file . "~/.aliases"))
(set-register ?E '(file . "~/.emacs.d/init.el"))
(set-register ?H '(file . "~/.hgrc"))
(set-register ?T '(file . "~/.TODO.org"))
Then I can use jump-to-register (C-x r j) to jump to one of these files when I wish to edit the file (or do something with one of the unlisted projects). Because a file/folder is stored in the register (rather than a window config say), emacs will open the file or folder it finds in the register.
I would like to create a function that allows to:
(incf vara varb varc vard)
Instead of
(incf vara)
(incf varb)
(incf varc)
(incf vard)
What I do not understand is how to be able to send more arguments, how to define that in a function?
(defun inc (&rest arg)
(interactive)
(mapcar 'incf arg)
)
This increases the argument, but ofcourse does not save them back into the variables.
How to go about this?
If you want to be able to write this form as (my-incf a b c) without quoting the variable names a, b, and c, make it a macro rather than a function:
(defmacro incf+ (&rest vars)
`(progn
,#(mapcar (lambda (var) `(incf ,var)) vars)))
Check that it expands into the right code using macroexpand:
(macroexpand '(incf+ var1 var2 var3))
;; => (progn (incf var1) (incf var2) (incf var3))
Because variables in Emacs Lisp have dynamic scope by default, you can accomplish almost the same thing with a function which takes quoted variable names as arguments. But the macro version has the advantage that, since it expands into code in the place when it was called, it will work with lexically bound variables as well. symbol-value only works with dynamically bound variables.
You can test this by putting the following in a file and loading it (in Emacs 24 or higher):
;; -*- lexical-binding: t -*-
(defun incf+fun (&rest vars)
(mapc #'(lambda (var) (incf (symbol-value var))) vars))
(defun incf-macro-test ()
(let ((a 5) (b 7) (c 11))
(incf+ a b c)
(list a b c)))
(defun incf-function-test ()
(let ((a 5) (b 7) (c 11))
(incf+fun 'a 'b 'c)
(list a b c)))
Evaluating (incf-macro-test) will return (6 8 12), but (incf-function-test) will enter the debugger with a (void-variable a) error.
It should work:
(require 'cl)
(setq a 1)
(setq b 2)
(defun inc (&rest arg)
(interactive)
(mapc (lambda (x) (incf (symbol-value x))) arg))
(inc 'a 'b)
(message "%s %s" a b) => (2 3)
You have to quote each argument otherwise (inc a b) becomes (inc 1 2) before executing inc.