External Flash Loader linker script file - stm32

I'm trying to make a custom external flash loader for my STM32F746 uC based board and i found some templates for this purpose from this link that is belongs to the ST workshop on this YouTube link. So when i dug into the corresponding files i saw that in a linker script file named linker.ld the RAM memory region is defined from base address 0x20000004 though i know that the RAM memory region in STM uCs starts from address 0x20000000:
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000004, LENGTH = 320K
}
I searched for many other templates file existing in this link and also they are using the same way for RAM memory region base address.
So the problem is why we must define RAM memory address from 0x20000004 for external flash loader algorithm to store in and not from 0x20000000 instead. Could anyone please help me to explain the reason and tell me that what will happen if we do the:
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 320K
}
instead of previous one and what errors might be occurred?
Thanks.

Related

linker script and changing the flash address

I would like to ask the following a question: im using stm32g0xx microcontroller and i want to change the flash address in linker script automatically and not be forced to changed manually every time i want to generate an apllication image to let it run from diffrent address. what im doing i wrote an application and i wrote it to tow different address"0x08001000 and 0x08004800" to have the apility to switch to other application incase one of them is updated or damaged. it worked fine but i need by every image to change the flash address manually and i would like to ask if it is possible to changed somewhere else out of the linker script like startup.s?
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 8K
FLASH (rx) : ORIGIN = 0x8001000, LENGTH = 32K
}
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 8K
FLASH (rx) : ORIGIN = 0x8004800, LENGTH = 32K
}
You can create two linker files and compile two times, each time with a different linker script and a different output binary. You will obtain the two necessary binaries. To integrate it on your project, it depends on your way of working (STM IDE, standalone Makefile...) which you did not mention.
As a side note, you should modify the LENGTH on your linker scripts, it will prevent the linker to place data where you have another application.
Your first application starts at 4KB (0x1000), and the second start at 18KB (0x4800), the lenght of the first application should be 18-4 = 16KB and the second LENGTH should be 32-18 = 14KB (if the FLASH total size is 32KB).
You can write two different linker script and apply one or the other in your building enviroment (with the -T linker flag) or you can use a variable for your ORIGIN and pass it with -Wl,--defsym=<VAR_NAME>=<VAR_VALUE>

Question on PCI Express(PCIe) configuration space access on VirtualBox

Hi I'm trying to access the PCIe configuration space with MMIO method on a kernel base.
Before I drop my question, my platform is Windows 10, VirtualBox 6.0.10.
My virtual machine set as default except the following:
chipset choosed ICH9
Core number set to 4
Memory set to 1GB
Added IDE controller(no HD connected)
After boot, the printing shows that valid memory address are:0x0~0x9FC00 and 0x100000~0x3FEF0000 as displayed in following screen shot.
While type 1 is RAM, 2 is ROM or Reserved, 3 is ACPI Reclaim Memory and 4 is ACPI NVS Memory.
Furthermore I retrieved base address of the PCIe configuration memory map base address from MCFG as showed in the following screen shot.
It can be seen that:
The configuration space base is 0x3F000000 which overlap with the valid memory space.
The first 8 byte of 0x3F000000~0x3F000008 is all 0, which should be first 8 byte of bus:0, device:0, function:0.
So whether I should not use VirtualBox, or I should do some other operations to enable PCIe MMIO accessibility of configuration space?
Thanks so much!!
You've probably parsed the "MFCG ACPI table" incorrectly, or used the wrong (virtual?) address for the "MFCG ACPI table" and forgot to check signature and checksum.
The "Base_addr:" doesn't make sense, and the "Start_PCI_bus: 0, End_PCI_bus: 0" doesn't make sense either.

How can I change the start address on flash?

I'm using STM32F746ZG and FreeRTOS.
The start address of flash is 0x08000000. But I want to change it to 0x08040000. I've searched this issue through google but I didn't find the solution.
I changed the linker script like the following.
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 320K
/* FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 1024K */
FLASH (rx) : ORIGIN = 0x8040000, LENGTH = 768K
}
If I only change it and run the debugger, it has the problem.
If I change the VECT_TAB_OFFSET from 0x00 to 0x4000, it works fine.
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET 0x40000 /* 0x00 */
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET;
But if I don't use debugger, it doesn't work anything.
It means it only works when using ST-Linker.
Please let me know if you know the solution.
Thank you for in advance of your reply.
The boot address can be set in the option bytes.
You can set any address in the flash with 16k increments. There are two 16 bit registers in the option bytes area, one is used when the boot pin is low at reset, the other when the pin is high. Write the desired address shifted right by 14 bits, i.e. divided by 16384.
To boot from 0x08040000, write 0x2010 into the register as described in the Option bytes programming chapter of the reference manual.
You could also write a bootloader. Bootloader sits on the 0x0800 0000 address and loads your application firmware meaning jumps to it.
This is the other way to do it.
You need to place 8 bytes at the original beginning of the FLASH. Stm32 boots always from the address 0x00000000 which is aliased to the one of the memories (depending on the boot pins and options).
The first word contains the stack pointer the second one your reset handler. You never get to your code as it boots always from the same address.
You will need to modify your linker script and the startup files where vectors are defined

How to find the number of data mapped by mmap()?

if mmap() was used to read a file, how can I find the number of data mapped by mmap().
float *map = (float *)mmap(NULL, FILESIZE, PROT_READ, MAP_SHARED, fd, 0);
The mmap system call does not read data. It just maps the data in your virtual address space (by indirectly configuring your MMU), and that virtual address space is changed by a successful mmap. Later, your program will read that data (or not). In your example, your program might later read map[356] if mmap has succeeded (and you should test against its failure).
Read carefully the documentation of mmap(2). The second argument (in your code, FILESIZE) defines the size of the mapping (in bytes). You might check that it is a multiple of sizeof(float) and divide it by sizeof(float) to get the number of elements in map that are meaningful and obtained from the file. The size of the mapping is rounded up to a multiple of pages. The man page of mmap(2) says:
A file is mapped in multiples of the page size. For a file that is
not a multiple of the page size, the remaining memory is zeroed when
mapped, and writes to that region are not written out to the file.
Data is mapped in pages. A page is usually 4096 bytes. Read more about paging.
The page size is returned by getpagesize(2) or by sysconf(3) with _SC_PAGESIZE (which usually gives 4096).
Consider reading some book like Operating Systems: Three Easy Pieces (freely downloadable) to understand how virtual memory works and what is a memory mapped file.
On Linux, the /proc/ filesystem (see proc(5)) is very useful to understand the virtual address space of some process: try cat /proc/$$/maps in your terminal, and read more to understand its output. For a process of pid 1234, try also cat /proc/1234/maps
From inside your process, you could even read sequentially the /proc/self/maps pseudo-file to understand its virtual address space, like here.

Device tree address and reg and property

I'm struggling to understand where to get the address of a device on a device tree? As an example how do I know that I should set <0x00900000 0x20000> in here.
Is memory mapped IO done in the hardware (the processor itself) or in software and do I just have to pass the right address in the device tree?
Is the address hardcoded on the processor or can I just set an arbitrary address? I cannot find anything in my reference manual about setting a certain address in the device tree
These kind of addresses can be found in the Reference Manual of the processor.
You can find the link here.
Take a look at the chapter 48 (OCRAM On-chip RAM Memory Controller) and more specifically at the section 48.2.1 (page 4118):
The total on-chip RAM size for the chip is 128 Kbytes, organized as 16K x 64 bits,mapped from 0x00900000 to 0x0091FFFF
This is where come from the values <0x00900000 0x20000> from the dtsi file, corresponding to the base address and the offset.
These values are in dts/dtsi file provided by the chip maker.