I am trying to find the best solution to build a database relation. I need something to create a table that will contain data split across other tables from different databases. All the tables got exactly the same structure (same column number, names and types).
In the single database, I would create a parent table with partitions. However, the volume of the data is too big to do it in a single database that's why I am trying to do a split. From the Postgres documentation what I think I am trying to do is "Multiple-Server Parallel Query Execution".
At the moment the only solution I think to implement is to build API of databases address and use it to get data across the network into the main parent database when needed. I also found Postgres external extension called Citus that might do the job but I don't know how to implement the unique key across multiple databases (or Shards like Citus call it).
Is there any better way to do it?
Citus would most likely solve your problem. It lets you use unique keys across shards if it is the distribution column, or if it is a composite key and contains the distribution column.
You can also use distributed-partitioned table in citus. That is a partitioned table on some column (timestamp ?) and hash distributed table on some other column (like what you use in your existing approach). Query parallelization and data collection would be handled by Citus for you.
Based on the above image, there are certain tables I want to be in the Internal Database (right hand side). The other tables I want to be replicated in the external database.
In reality there's only one set of values that SHOULD NOT be replicated across. The rest of the database can be replicated. Basically the actual price columns in the prices table cannot be replicated across. It should stay within the internal database.
Because the vendors are external to the network, they have no access to the internal app.
My plan is to create a replicated version of the same app and allow vendors to submit quotations and picking items.
Let's say the replicated tables are at least quotations and quotation_line_items. These tables should be writeable (in terms of data for INSERTs, UPDATEs, and DELETEs) at both the external database and the internal database. Hence at both databases, the data in the quotations and quotation_line_items table are writeable and should be replicated across in both directions.
The data in the other tables are going to be replicated in a single direction (from internal to external) except for the actual raw prices columns in the prices table.
The quotation_line_items table will have a price_id column. However, the raw price values in the prices table should not appear in the external database.
Ultimately, I want the data to be consistent for the replicated tables on both databases. I am okay with synchronous replication, so a bit of delay (say, a couple of second for the write operations) is fine.
I came across pglogical https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE
and they have the concept of PUBLISHER and SUBSCRIBER.
I cannot tell based on the readme which one would be acting as publisher and subscriber and how to configure it for my situation.
That won't work. With the setup you are dreaming of, you will necessarily end up with replication conflicts.
How do you want to prevent that data are modified in a conflicting fashion in the two databases? If you say that that won't happen, think again.
I believe that you would be much better off using a single database with two users: one that can access the “secret” table and one that cannot.
If you want to restrict access only to certain columns, use a view. Simple views are updateable in PostgreSQL.
It is possible with BDR replication which uses pglogical. On a basic level by allocating ranges of key ids to each node so writes are possible in both locations without conflict. However BDR is now a commercial paid for product.
We have a large table in our Postgres production database which we want to start "sharding" using foreign tables and inheritance.
The desired architecture will be to have 1 (empty) table that defines the schema and several foreign tables inheriting from the empty "parent" table. (possible with Postgres 9.5)
I found this well written article https://www.depesz.com/2015/04/02/waiting-for-9-5-allow-foreign-tables-to-participate-in-inheritance/ that explains everything on how to do it from scratch.
My question is how to reduce the needed migration of data to a minimum.
We have this 100+ GB table now, that should become our first "shard". And in the future we will regulary add new "shards". At some point, the older shards will be moved to another tablespace (on cheaper hardware since they become less important).
My question now:
Is there a way to "ALTER" an existing table to be a foreign table instead?
No way to use alter table to do this.
You really have to basically do it manually. This is no different (really) than doing table partitioning. You create your partitions, you load the data. You direct reads and writes to the partitions.
Now in your case, in terms of doing sharding there are a number of tools I would look at to make this less painful. First, if you make sure your tables are split the way you like them first, you can use a logical replication solution like Bucardo to replicate the writes while you are moving everything over.
There are some other approaches (parallelized readers and writers) that may save you some time at the expense of db load, but those are niche tools.
There is no native solution for shard management of standard PostgreSQL (and I don't know enough about Postgres-XL in this regard to know how well it can manage changing shard criteria). However pretty much anything is possible with a little work and knowledge.
We have a SaaS application where each tenant has its own database in Postgres. How would I apply a patch to all the databses? For example if I want to add a table or add a column to a table, I have to either write a program that loops through all databases and execute a SQL against them or using pgadmin, go through them one by one.
Is there smarter and/or faster way?
Any help is greatly appreciated.
Yes, there's a smarter way.
Don't create a new database for each tenant. If everything is in one database then you only need to alter one database.
Pick one database, alter each table to have the column TENANT and add this to the primary key. Then insert into this database every record for all tenants and drop the other databases (obviously considerably more work than this as your application will need to be changed).
The differences with your approach are extensively discussed elsewhere:
What problems will I get creating a database per customer?
What are the advantages of using a single database for EACH client?
Multiple schemas versus enormous tables
Practicality of multiple databases per client vs one database
Multi-tenancy - single database vs multiple database
If you don't put everything in one database then I'm afraid you have to alter them all individually, and doing it programatically would be simplest.
At a higher level, all multi-tenant applications follow one of three approaches:
One tenant's data lives in one database,
One tenant's data lives in one schema, or
Add a tenant_id / account_id column to your tables (shared schema).
I usually find that developers use the following criteria when they evaluate these different approaches.
Isolation: Since you can put each tenant into its own database in one hand, and have tenants share the same table on the other, this becomes the most apparent dimension. If you provide your users raw SQL access or you're in a regulated industry such as healthcare, you may need strict guarantees from your database. That said, PostgreSQL 9.5 comes with row level security policies that makes this less of a concern for most applications.
Extensibility: If your tenants are sharing the same schema (approach #3), and your tenants have fields that varies between them, then you need to think about how to merge these fields.
This article on multi-tenant databases has a great summary of different approaches. For example, you can add a dozen columns, call them C1, C2, and so forth, and have your application infer the actual data in this column based on the tenant_id. PostgresQL 9.4 comes with JSONB support and natively allows you to use semi-structured fields to express variations between different tenants' data.
Scaling: Another criteria is how easily your database would scale-out. If you create a tenant per database or schema (#1 or #2 above), your application can make use of existing Ruby Gems or [Django packages][1] to simplify app integration. That said, you'll need to manually manage your tenants' data and the machines they live on. Similarly, you'll need to build your own sharding logic to propagate foreign key constraints and ALTER TABLE commands.
With approach #3, you can use existing open source scaling solutions, such as Citus. For example, this blog post describes how to easily shard a multi-tenant app with Postgres.
it's time for me to give back to the community :) So after 4 years, our multi-tenant platform is in production and I would like to share the following observations/experiences with all of you.
We used a database per each tenant. This has given us extreme flexibility as the size of the databases in the backups are not huge and hence we can easily import them into our staging environment for customers issues.
We use Liquibase for database development and upgrades. This has been a tremendous help to us, allowing us to package the entire build into a simple war file. All changes are easily versioned and managed very efficiently. There is a bit of learning curve here an there but nothing substantial. 2-5 days can significantly save you time.
Given that we use Spring/JPA/Hibernate, we use a technique called Dynamic Data Source Routing. So when a user logs-in, we find the related datasource with a lookup and connect them to the session to the right database. That's also when the Liquibase scripts get applied for updates.
This is, for now, I will come back with more later on.
Well, there are problems with one database for all tenants in our case for sure.
The backup file gets huge and becomes almost not practical hard to manage
For troubleshooting, we need to restore customer's data in our dev env, we just use that customer's backup file and usually the file is not as big as if we were to use one database for all customers.
Again, Liquibase has been key in allowing to manage updates across all the tenants seamlessly and without any issues. Without Liquibase, I can see lots of complications with this approach. So Liquibase, Liquibase and more Liquibase.
I also suspect that we would need a more powerful hardware to manage a huge database with large joins across millions of records vs much lighter database with much smaller queries.
In case of problems, the service doesn't go down for everyone and there will be limited to one or few tenants.
In general, for our purposes, this has been a great architectural decision and we are benefiting from it every day. One time we had one customer that didn't have their archiving active and their database size grew to over 3 GB. With offshore teams and slower internet as well as storage/bandwidth prices, one can see how things may become complicated very quickly.
Hope this helps someone.
--Rex
I was looking up ways to have postgres partition data into tables based on timestamp for example, but without having to add the relevant child tables manually. I saw this blog post that does just that
https://blog.engineyard.com/2013/scaling-postgresql-performance-table-partitioning
but I'm dubious about the idea of creating tables based on string concatenation and checking the pg_catalog. Is this a reasonable idea?
pg_partman is an extension created specifically to manage the complexity of partition management. I haven't used this extension, but I've used others by the same author and they are generally of excellent quality.