The list of unicode unusual characters - unicode

Where can I get the complete list of all unicode characters that doesn't behave as simple characters. Examples: character 0x0363 (won't be printed without another one before), character 0x0084 (does weird things when printed). I need just a raw list of such unusual characters to replace them with something harmless to avoid unwanted output effects. Regular characters (those who not in this list) should use exactly one character place when printed (= cursor moved +1 to the right), should not depend on previous or next characters, and should not affect printing style in any way.
Edit because of multiple comments:
I have some unicode string, usually consists of "usual" characters like 0x20-0x7E or cyrillic letters. Also, there are a lot of other unicode characters that are usual and may be safely assumed as having strlen() = 1. The string is printed on the terminal and I should know the resulting position of the cursor. I don't want to use some complex and non-stable libraries to do that, i want to have simplest possible logic to do that. Every problematic character may be replaced with U+0xFFFD or something like "<U+0363>" (ASCII string with its index instead of character itself). I want to have a list of "possibly-problematic" characters to replace. It is acceptable to have some non-problematic characters in this list too, but not much.

There is no simple algorithm for this. You'll likely need a complex, but extremely stable library: libicu, or something based on it. Basically every other library that does this kind of work is based on libicu, which is maintained by the Unicode organization.
If you don't want to use the official library (or something based on their library), you'll need to parse the Unicode Character Database yourself. In particular, you need to look at Character Properties, and parse the files in the UCD.
I believe you're asking for Bidi_Class (i.e. "direction") to be Left_To_Right, Canonical_Combining_Class to be Not_Reordered, and Joining_Type to be Non_Joining.
You probably also want to check the General_Category and avoid M* (Marks) and C* (Other).
This should work for some Emoji, but this whole approach will break a lot of emoji that look simple and are not. Most famously: ❤️, which is two "characters," not one. You may want to filter out Emoji. As a simple starting point, you may want to restrict yourself to the Basic Multilingual Plane (BMP), which are code points 0000-FFFF. Anything above this range is, almost by definition, rare or unusual. The BMP does include some emoji, but most emoji (and all new emoji) are outside the range.
Remember that the glyphs for single characters can still have radically different widths, even in nominally fixed-width fonts. For example, 𒈙 (U+12219 CUNEIFORM SIGN LUGAL OPPOSING LUGAL) is a completely "normal" character in the way you're describing. It is left-to-right. It doesn't depend on or influence characters around it (it's non-combining and non-joining). Its "length in characters" is 1. Its glyph is also extremely wide in most fonts and breaks a lot of layout. I don't know anything in the Unicode database that would warn you of this, since "glyph width" is entirely a function of fonts, not characters, and Unicode explicitly does not consider fonts. (That said, most of the most problematic characters are outside the BMP. Probably the most common exception is DŽ, but many fixed-width fonts have a narrow glyph for it: DŽ.)
Let's write some cuneiform in a fixed-width font.
Normally, every character should line up with a character above.
Here: 𒈙. See how these characters don't align correctly?
Not only is it a very wide glyph, but its width is not even a multiple.
At least not in my font (Mac Safari 15.0).
But DŽ is ok.
Also remember that there are multiple ways to encode the same "character." For example, é can be a "simple" character (U+00E9), or it can be two characters (U+0065, U+0301). So in some cases é may print in your scheme, and in others it won't. I suspect this is fine for your problem, but if it isn't, you're going to need to apply a normalization form (likely NFC).

Related

Will precluding surrogate code points also impede entering Chinese characters?

I have a name input field in an app and would like to prevent users from entering emojis. My idea is to filter for any characters from the general categories "Cs" and "So" in the Unicode specification, as this would prevent the bulk of inappropriate characters but allow most characters for writing natural language.
But after reading the spec, I'm not sure if this would preclude, for example, a Pinyin keyboard from submitting Chinese characters that need supplemental code points. (My understanding is still rough.)
Would excluding surrogates still leave most Chinese users with the characters they need to enter their names, or is the original Unicode space not big enough for that to be a reasonable expectation?
Your method would be both ineffective and too excessive.
Not all emoji are outside of the Basic Multilingual Plane (and thus don’t require surrogates in the first place), and not all emoji belong to the general category So. Filtering out only these two groups of characters would leave the following emoji intact:
#️⃣ *️⃣ 0️⃣ 1️⃣ 2️⃣ 3️⃣ 4️⃣ 5️⃣ 6️⃣ 7️⃣ 8️⃣ 9️⃣ ‼️ ⁉️ ℹ️ ↔️ ◼️ ◻️ ◾️ ◽️ ⤴️ ⤵️ 〰️ 〽️
At the same time, this approach would also exclude about 79,000 (and counting) non-emoji characters covering several dozen scripts – many of them historic, but some with active user communities. The majority of all Han (Chinese) characters for instance are encoded outside the BMP. While most of these are of scholarly interest only, you will need to support them regardless especially when you are dealing with personal names. You can never know how uncommon your users’ names might be.
This whole ordeal also hinges on the technical details of your app. Removing surrogates would only work if the framework you are using encodes strings in a format that actually employs surrogates (i.e. UTF-16) and if your framework is simultaneously not aware of how UTF-16 really works (as Java or JavaScript are, for example). Surrogates are never treated as actual characters; they are exceptionally reserved codepoints that exist for the sole purpose of allowing UTF-16 to deal with characters in the higher planes. Other Unicode encodings aren’t even allowed to use them at all.
If your app is written in a language that either uses a different encoding like UTF-8 or is smart enough to process surrogates correctly, then removing Cs characters on input is never going to have any effect because no individual surrogates are ever being exposed to your program. How these characters are entered by the user does not matter because all your app gets to see is the finished product (the actual character codepoints).
If your goal is to remove all emoji and only emoji, then you will have to put a lot of effort into designing your code because the Unicode emoji spec is incredibly convoluted. Most emoji nowadays are constructed out of multiple characters, not all of which are categorised as emoji by themselves. There is no easy way to filter out just emoji from a string other than maintaining an explicit list of every single official emoji which would need to be steadily updated.
Will precluding surrogate code points also impede entering Chinese characters? […] if this would preclude, for example, a Pinyin keyboard from submitting Chinese characters that need supplemental code points.
You cannot intercept how characters are entered, whether via input method editor, copy-paste or dozens of other possibilities. You only get to see a character when it is completed (and an IME's work is done), or depending on the widget toolkit, even only after the text has been submitted. That leaves you with validation. Let's consider a realistic case. From Unihan_Readings.txt 12.0.0 (2018-11-09):
U+20009 ‹𠀉› (the same as U+4E18 丘) a hill; elder; empty; a name
U+22218 ‹𢈘› variant of 鹿 U+9E7F, a deer; surname
U+22489 ‹𢒉› a surname
U+224B9 ‹𢒹› surname
U+25874 ‹𥡴› surname
Assume the user enters 𠀉, then your unnamed – but hopefully Unicode compliant – programming language must consider the text on the grapheme level (1 grapheme cluster) or character level (1 character), not the code unit level (surrogate pair 0xD840 0xDC09). That means that it is okay to exclude characters with the Cs property.

Why do the printed unicode characters change?

The way the unicode symbol is displayed depends on whether I use the White Heavy Check Mark or the Negative Squared Cross Mark before it or not. If I do, the Warning Sign is coloured. If I put a space between the symbols, I get the mono-coloured text-like version.
Why does this behaviour exist and can I force the coloured symbol somehow?
I tried a couple of different REPLs, the behaviour was the same.
; No colour
(str (char 0x274e) " " (char 0x26A0))
; Coloured
(str (char 0x274e) "" (char 0x26A0))
Clojure unicode display.
I expect the symbol being displayed the same way regardless of which symbol comes before it.
Why does this behaviour exist
A vendor thought it would be a neat idea to render emoji glyhps in colour. The idea caught on.
https://en.wikipedia.org/wiki/Emoji#Emoji_versus_text_presentation
can I force the coloured symbol somehow
U+FE0E VARIATION SELECTOR-15 and U+FE0F VARIATION SELECTOR-16
http://mts.io/2015/04/21/unicode-symbol-render-text-emoji/
Unicode is about characters (code points), not glyphs (see it as "image" of a character).
Fonts are free to (and should) merge nearby characters into a single glyphs. In printed Latin scripts this is not very common (but we could have it e.g. ff,fi, ffi), without considering the combining codepoints which, per definition, should combine with other characters, to get just one glyph,
Many other scripts require it. Starting to cursive Latin scripts, but most cursive scripts requires changes. E.g. Arabic has different glyphs of initial, final, middle or separated character (+ special combination, common to cursive scripts). Indian scripts have similar behaviours.
So the base of Unicode has already this behaviour, and modern good fonts should be able to do it.
It was not so late, that emojii uses such functionality, e.g. country letters/flags to other common cases.
Often the Unicode documentation tell you of such possibilities, and the special code points which could change behaviour, but then it is task of the font to fullfil the expected behaviour (and to find good glyphs).
So: character (as unicode code point) is not one to one to a design (glyphs).

Subset of Unicode normally used in writing?

What is the subset of Unicode characters that are normally used in writing — such as those that would be typically found in a newspaper article?
For example, in English, the characters in the range [a-zA-Z0-9], plus some punctuation characters, would be sufficient for most writing.
But I want to support languages that use characters that fall outside the ASCII range, while excluding the non-printing or decorative characters.
The objective is to restrict the user input to the application to codepoints that are legitimately used in written language. Because the user input will be saved and displayed, I do not want to allow pranksters to input text consisting entirely of things like diacritics, Unicode combining characters, Unicode flow control characters, etc.
Regrettably, I am not fluent in every single language found in Unicode. Has anyone compiled a list of all of the subset of Unicode characters that are normally used in writing?
The official list of Unicode code points is UnicodeData.txt. This is a plain text file with one line per code point; it's easily machine-readable. For example:
0022;QUOTATION MARK;Po;0;ON;;;;;N;;;;;
The third semicolon-delimited field is the abbreviated name of the "General Category". This is explained further in chapter 4 of the Unicode Standard, specifically in section 4.5; see the table on page 131 (page 12 of the PDF file). For example, "Lu" is uppercase letters, "Ll" is lowercase letters, Pc, Pd, Ps, et al are various kinds of punctuation. (The first letter of the two-letter abbreviation represents a higher-level category such as letter, digit, punctuation, etc.)
Note that some ranges of code points are not listed explicitly. For example, the range of CJK (Chinese, Japanese, Korean) ideographs is represented as:
4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;;
9FCC;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;;
I think there are other files on unicode.org that fill in these gaps.
I'm still not 100% clear on just what subset you're trying to define, but you can probably define it as a particular set of General Category values.
I do not want to allow pranksters to input text consisting entirely of things like diacritics, Unicode combining characters
Diacritics/combining characters will be used in normal written language. So if you want to stop 'pranksters' you're going to need something more sophisticated than just a list of permitted characters. You'll have to do some sort of linguistic analysis for every language you want to permit.
I'd recommend not bothering with this, because it's going to be hard and you won't succeed anyway. Just let people write what they want.
Try WGL4 (652 characters), MES-1 (335 characters) or MES-2 (1062 characters). Find these at Wikipedia.
You may wish to exclude characters IJijĸĿŀʼn˚―⅛⅜⅝⅞♪ from MES-1 if you want to use this set.
Edit: I realize this is a bad answer. Especially the removing characters from MES-1 part was total garbage. I shouldn't have posted this. I'm ashamed of whoever upvoted this.
If anything, use Subset1 (678 characters), Subset2 (1193 characters) and Subset3 (2823 characters). https://unicodesubsets.miraheze.org/wiki/User:PiotrGrochowski

What are the unicode ranges for Hindi accented characters?

I'm trying to gather a Unicode list of all the 'o' like shapes in the Hindi character-set. In fact, a list of any characters (in any language) that makes uses of separate characters to indicate an accent would be better.
I intend to use this unicode-list in a RegExp.
I been trying to edit a list of character-ranges by outputting them in an Input TextField, but editing this text causes weird issues (the keyboard-cursor isn't place on the correct character, selections suddenly dissappear / incorrectly warps... in other words... HINDI HELL!)
I've tried this with Notepad++ too, but although it was more responsive, it eventually crapped out on me like it did in the Flash Player textfield. This seems to occur especially while removing the [] block (nulls?) characters. Some of them trigger odd behaviors.
Anyways, all I want is a list of the accents.
An example of a few are in the image below (but I would need ALL accents):
Thanks!
You can find pdf's containing lists of unicode ranges, grouped by language, here: http://unicode.org/charts/
For Hindi, you probably want Devanagari or Devanagari Extended.
Here is the character class for Devanagari combining marks:
[\u901\u902\u903\u93c\u93e\u93f\u940\u941\u942\u943
\u944\u945\u946\u947\u948\u949\u94a\u94b\u94c\u94d
\u951\u952\u953\u954\u962\u963]
This is only the basic Devanagari block (not Devanagari Extended).
If you want the complete set (for all languages), you can do it problematically.
You start from the Unicode date file at ftp://ftp.unicode.org/Public/6.1.0/ucd/UnicodeData.txt, described by TR-44 (http://unicode.org/reports/tr44/#Property_Definitions)
You can use the Canonical_Combining_Class field (see at http://unicode.org/reports/tr44/#Canonical_Combining_Class_Values) to filter the exact characters you want.
Can't be more precise, because "accent" a bit vague :-)
You might even have to also look at General_Category to get the filter right (and exclude certain marks, or symbols, or punctuation).
And a script doing this would definitely be better than trying to mess with text editors.
One of the characteristics of combining characters is that they combine :-)
So you might get all kind of puzzling results (like this: http://www.siao2.com/2006/02/17/533929.aspx :-)

Detect if character is simplified or traditional Chinese character

I found this question which gives me the ability to check if a string contains a Chinese character. I'm not sure if the unicode ranges are correct but they seem to return false for Japanese and Korean and true for Chinese.
What it doesn't do is tell if the character is traditional or simplified Chinese. How would you go about finding this out?
update
Q: How can I recognize from the 32 bit value of a Unicode character if this is a Chinese, Korean or Japanese character?
http://unicode.org/faq/han_cjk.html
Their argument that the characters regardless of their shape have the same meaning and therefore should be represented by the same code. Well, it's not meaningless to me because I am analyzing individual characters which doesn't work with their solution:
A better solution is to look at the text as a whole: if there's a fair amount of kana, it's probably Japanese, and if there's a fair amount of hangul, it's probably Korean.
As already stated, you can't reliably detect the script style from a single character, but it is possible for a sufficiently long sample of text. See https://github.com/jpatokal/script_detector for a Ruby gem that does the job, and Simplified Chinese Unicode table for a general discussion.
It is possible for some characters. The Traditional and Simplified character sets overlap, so you have basically three sets of characters:
Characters that are traditional only.
Characters that are simplified only.
Characters that have been left untouched, and are available in both.
Take the character 面 for instance. It belongs both to #2 and #3... As a simplified character, it stands for 面 and 麵, face and noodles. Whereas 麵 is a traditional character only. So in the Unihan database, 麵 has a kSimplifiedVariant, which points to 面. So you can deduct that it is a traditional character only.
But 面 also has a kTraditionalVariant, which points to 麵. This is where the system breaks: if you use this data to deduct that 面 is a simplified character only, you'd be wrong...
On the other hand, 韩 has a kTraditionalVariant, pointing to 韓, and these two are a "real" Simplified/Traditional pair. But nothing in the Unihan database differentiates cases like 韓/韩 from cases like 麵/面.
As I think you've discovered, you can't. Simplified and traditional are just two styles of writing the same characters - it's like the difference between Roman and Gothic script for European languages.