Could not match kind: KindsDoNotUnify error - purescript

This is a strange error I encountered while in practice, the thing is that there is a data type, that has an alias (defined in another module) and deriving newtype instance for the type the uses this alias type leads to the compiler error.
So, I tried to narrow it down the case, it requires two small modules to be reproduced:
Module A, which uses TAlias from Module B to declare newtype and derive Newtype instance:
module A where
import B (TAlias)
import Data.Newtype (class Newtype)
data M a = M a
-- define a type that uses alas type
newtype NewA a = NewA (TAlias (M a))
derive instance Newtype (NewA a) _
Module B, where T and TAlias are defined
module B where
data T :: forall m. m -> Type
data T msg = E
type TAlias :: forall k. k -> Type
type TAlias msg =
T msg -- here is is the error
In the last line of the module B the compiler (Purescript 0.14.4) gives an error:
Could not match kind
Type
with kind
k
while checking that type M a
has kind k
while inferring the kind of T #k (M a)
while inferring the kind of Newtype (NewA a) (T #k (M a))
in type class instance
Data.Newtype.Newtype (NewA a)
(T #k (M a))
PureScript(KindsDoNotUnify)
So I wonder what is the reason for the error? How it can be fixed to allow deriving Newtype in such a case.

Related

REPL: How can I look up information about a type?

Coming from Haskell, I struggle finding an easy way to look up type definitions in Purescript's REPL. In Haskell, I can do the following inside GHCI:
-- type class
:info Monad
-- shortcut
:i Monad
-- concrete types
:i []
:i (->)
-- type constructors work as well with a minimized output
:i Just
type Monad :: (* -> *) -> Constraint
class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
{-# MINIMAL (>>=) #-}
-- Defined in ‘GHC.Base’
instance Monad (Either e) -- Defined in ‘Data.Either’
instance Monad [] -- Defined in ‘GHC.Base’
instance Monad Maybe -- Defined in ‘GHC.Base’
instance Monad IO -- Defined in ‘GHC.Base’
instance Monad ((->) r) -- Defined in ‘GHC.Base’
instance (Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c)
-- Defined in ‘GHC.Base’
instance (Monoid a, Monoid b) => Monad ((,,) a b)
-- Defined in ‘GHC.Base’
instance Monoid a => Monad ((,) a) -- Defined in ‘GHC.Base’
I can't find anything similar in spago. Is there a way to get this information without searching it online, for instance in Pursuit?
To get the type signatures, use :type
> :type (1 + _)
> Int -> Int
To display the kind of a type, use :kind
> :kind Maybe
> Type -> Type
To See all the functions, types, and type classes that a module exports, you can use browse
> :browse Data.Maybe
data Maybe a
= Nothing
| Just a
fromJust :: forall (a :: Type). Partial => Maybe a -> a
......
......
For more info, you can refer this

No type class instance was found, the instance head contains unknown type variables

Well, just simplified as possible:
There is a function that takes functor and does whatever
sToInt :: ∀ a s. Functor s => s a -> Int
sToInt val = unsafeCoerce val
Usage of this function with functor S which param (v) is functor too.
-- declare date type S that is functor
data S (v :: Type -> Type) a = S (v a)
instance functorS :: Functor v => Functor (S v) where
map f (S a) = S (map f a)
sV :: ∀ v a. S v a
sV = unsafeCoerce 1
sss :: Int
sss = sToInt sV -- get the error here
No type class instance was found for
Data.Functor.Functor t2
The instance head contains unknown type variables. Consider adding a type annotation.
while applying a function sToInt
of type Functor t0 => t0 t1 -> Int
to argument sV
while checking that expression sToInt sV
has type Int
in value declaration sss
where t0 is an unknown type
t1 is an unknown type
t2 is an unknown type
So it doesn't like S Functor instance has v param Functor constraint, I wonder why getting this error and how to fix it for this case.
This doesn't have to do with v or with the specific shape of S. Try this instead:
sV :: forall f a. Functor f => f a
sV = unsafeCoerce 1
sss :: Int
sss = sToInt sV
You get a similar error.
Or here's an even more simplified version:
sV :: forall a. a
sV = unsafeCoerce 1
sss :: Int
sss = sToInt sV
Again, same error.
The problem is that sToInt must get a Functor instance as a parameter (that's what the Functor s => bit in its type signature says), and in order to pick which Functor instance to pass, the compiler needs to know the type of the value. Like, if it's Maybe a, it will pass the Functor Maybe instance, and if it's Array a, it will pass the Functor Array instance, and so on.
Usually the type can be inferred from the context. For example when you say map show [1,2,3], the compiler knows that map should come from Functor Array, because [1,2,3] :: Array Int.
But in your case there is nowhere to get that information: sV can return S v for any v, and sToInt can also take any functor type. There is nothing to tell the compiler what the type should be.
And the way to fix this is obvious: if there is no context information for the compiler to get the type from, you have to tell it what the type is yourself:
sss :: Int
sss = sToInt (sV :: S Maybe _)
This will be enough for the compiler to know that v ~ Maybe, and it will be able to construct a Functor (S Maybe) instance and pass it to sToInt.
Alternatively, if you want the consumer of sss to decide what v is, you can add an extra dummy parameter to capture the type, and require that the consumer pass in a Functor v instance:
sss :: forall v. Functor v => FProxy v -> Int
sss _ = sToInt (sV :: S v _)
ddd :: Int
ddd = sss (FProxy :: FProxy Maybe)
In Haskell you can do this with visible type applications instead of FProxy, but PureScript, sadly, doesn't support that yet.
Even more alternatively, if sToInt doesn't actually care for a Functor instance, you can remove that constraint from it, and everything will work as-is:
sToInt :: forall s a. s a -> Int
sToInt a = unsafeCoerce a
sV :: forall v a. S v a
sV = unsafeCoerce 1
sss :: Int
sss = sToInt sV
This works because PureScript allows for ambiguous (aka "unknown") types to exist as long as they're not used for selecting instances.

Writing Functor instance vs. writing Eq instance for NonEmpty in Purescript

I'm currently learning Purescript by reading the Purescript by Example book (so far one of the only resources I've found that covers the language extensively).
I'm trying to implement the exercises in section 6.7 (Instance Dependencies), and I can't get my head around the following compiler error:
I've implemented the Semigroup and Eq instances for a data type data NonEmpty a = NonEmpty a (Array a) as follows:
instance eqNonEmpty :: Eq a => Eq (NonEmpty a) where
eq (NonEmpty h1 t1) (NonEmpty h2 t2) = h1 == h2 && t1 == t2
instance semigroupNonEmpty :: Semigroup (NonEmpty a) where
append (NonEmpty h1 t1) (NonEmpty h2 t2) = NonEmpty h1 (t1 <> [h2] <> t2)
But when I try to implement the Functor instance the same way I get the error above.
What seems to work is this:
instance functorNonEmpty :: Functor NonEmpty where
map f (NonEmpty h t) = NonEmpty (f h) (map f t)
Now, why is that? I can't figure it out.
Thanks!
That's just how the Functor class is defined: it applies to types that take a parameter. So, for example, the Functor class would apply to Maybe and to List, but wouldn't apply to Int or to String, and equally wouldn't apply to Maybe Int or List String.
The type NonEmpty does take a parameter, because that's how it is defined:
data NonEmpty a = ...
But a type NonEmpty a does not take a parameter, regardless of what a might be.
The classes Eq and Semigroup, on the other hand, expect a type without any parameters. So these classes can apply to Int, String, Maybe Boolean, and any other type without parameters, including NonEmpty a, regardless of what a might be.

Similar record types in a list/array in purescript

Is there any way to do something like
first = {x:0}
second = {x:1,y:1}
both = [first, second]
such that both is inferred as {x::Int | r} or something like that?
I've tried a few things:
[{x:3}] :: Array(forall r. {x::Int|r}) -- nope
test = Nil :: List(forall r. {x::Int|r})
{x:1} : test -- nope
type X r = {x::Int | r}
test = Nil :: List(X) -- nope
test = Nil :: List(X())
{x:1} : test
{x:1, y:1} : test -- nope
Everything I can think of seems to tell me that combining records like this into a collection is not supported. Kind of like, a function can be polymorphic but a list cannot. Is that the correct interpretation? It reminds me a bit of the F# "value restriction" problem, though I thought that was just because of CLR restrictions whereas JS should not have that issue. But maybe it's unrelated.
Is there any way to declare the list/array to support this?
What you're looking for is "existential types", and PureScript just doesn't support those at the syntax level the way Haskell does. But you can roll your own :-)
One way to go is "data abstraction" - i.e. encode the data in terms of operations you'll want to perform on it. For example, let's say you'll want to get the value of x out of them at some point. In that case, make an array of these:
type RecordRep = Unit -> Int
toRecordRep :: forall r. { x :: Int | r } -> RecordRep
toRecordRep {x} _ = x
-- Construct the array using `toRecordRep`
test :: Array RecordRep
test = [ toRecordRep {x:1}, toRecordRep {x:1, y:1} ]
-- Later use the operation
allTheXs :: Array Int
allTheXs = test <#> \r -> r unit
If you have multiple such operations, you can always make a record of them:
type RecordRep =
{ getX :: Unit -> Int
, show :: Unit -> String
, toJavaScript :: Unit -> Foreign.Object
}
toRecordRep r =
{ getX: const r.x
, show: const $ show r.x
, toJavaScript: const $ unsafeCoerce r
}
(note the Unit arguments in every function - they're there for the laziness, assuming each operation could be expensive)
But if you really need the type machinery, you can do what I call "poor man's existential type". If you look closely, existential types are nothing more than "deferred" type checks - deferred to the point where you'll need to see the type. And what's a mechanism to defer something in an ML language? That's right - a function! :-)
newtype RecordRep = RecordRep (forall a. (forall r. {x::Int|r} -> a) -> a)
toRecordRep :: forall r. {x::Int|r} -> RecordRep
toRecordRep r = RecordRep \f -> f r
test :: Array RecordRep
test = [toRecordRep {x:1}, toRecordRep {x:1, y:1}]
allTheXs = test <#> \(RecordRep r) -> r _.x
The way this works is that RecordRep wraps a function, which takes another function, which is polymorphic in r - that is, if you're looking at a RecordRep, you must be prepared to give it a function that can work with any r. toRecordRep wraps the record in such a way that its precise type is not visible on the outside, but it will be used to instantiate the generic function, which you will eventually provide. In my example such function is _.x.
Note, however, that herein lies the problem: the row r is literally not known when you get to work with an element of the array, so you can't do anything with it. Like, at all. All you can do is get the x field, because its existence is hardcoded in the signatures, but besides the x - you just don't know. And that's by design: if you want to put anything into the array, you must be prepared to get anything out of it.
Now, if you do want to do something with the values after all, you'll have to explain that by constraining r, for example:
newtype RecordRep = RecordRep (forall a. (forall r. Show {x::Int|r} => {x::Int|r} -> a) -> a)
toRecordRep :: forall r. Show {x::Int|r} => {x::Int|r} -> RecordRep
toRecordRep r = RecordRep \f -> f r
test :: Array RecordRep
test = [toRecordRep {x:1}, toRecordRep {x:1, y:1}]
showAll = test <#> \(RecordRep r) -> r show
Passing the show function like this works, because we have constrained the row r in such a way that Show {x::Int|r} must exist, and therefore, applying show to {x::Int|r} must work. Repeat for your own type classes as needed.
And here's the interesting part: since type classes are implemented as dictionaries of functions, the two options described above are actually equivalent - in both cases you end up passing around a dictionary of functions, only in the first case it's explicit, but in the second case the compiler does it for you.
Incidentally, this is how Haskell language support for this works as well.
Folloing #FyodorSoikin answer based on "existential types" and what we can find in purescript-exists we can provide yet another solution.
Finally we will be able to build an Array of records which will be "isomorphic" to:
exists tail. Array { x :: Int | tail }
Let's start with type constructor which can be used to existentially quantify over a row type (type of kind #Type). We are not able to use Exists from purescript-exists here because PureScript has no kind polymorphism and original Exists is parameterized over Type.
newtype Exists f = Exists (forall a. f (a :: #Type))
We can follow and reimplement (<Ctrl-c><Ctrl-v> ;-)) definitions from Data.Exists and build a set of tools to work with such Exists values:
module Main where
import Prelude
import Unsafe.Coerce (unsafeCoerce)
import Data.Newtype (class Newtype, unwrap)
newtype Exists f = Exists (forall a. f (a :: #Type))
mkExists :: forall f a. f a -> Exists f
mkExists r = Exists (unsafeCoerce r :: forall a. f a)
runExists :: forall b f. (forall a. f a -> b) -> Exists f -> b
runExists g (Exists f) = g f
Using them we get the ability to build an Array of Records with "any" tail but we have to wrap any such a record type in a newtype before:
newtype R t = R { x :: Int | t }
derive instance newtypeRec :: Newtype (R t) _
Now we can build an Array using mkExists:
arr :: Array (Exists R)
arr = [ mkExists (R { x: 8, y : "test"}), mkExists (R { x: 9, z: 10}) ]
and process values using runExists:
x :: Array [ Int ]
x = map (runExists (unwrap >>> _.x)) arr

Higher kinded Types and Type arguments for classes

Suppose you are using the FlexibleInstances extension and have the class
class C a where
f :: a b -> Maybe b
how would you implement it for a list of lists of a datatype. In particular, how would the type be written. The only thing I could find is how to do it for a single list, but not a list of lists or lists of any other datatypes.
This works:
instance C [] where
...
But this doesn't
data D = ...
instance C [[D]] where
...
How can I express something like this?
You need a newtype
class C a where
f :: a b -> b -- the class before the OP edited
newtype LL a = LL [[a]]
instance C LL where
f (LL xss) = ...
However, it is impossible to write a completely meaningful instance, since if the lists-of-lists is empty, it is impossible to extract an element. the best we could do is
instance C LL where
f (LL xss) = case concat xss of
(x:_) -> x
_ -> error "f: no elements"
I'm not sure if that is a good idea.
As an alternative, you could use type families or functional dependencies. Here's a solution with type families.
{-# LANGUAGE TypeFamilies, FlexibleInstances #-}
class C a where
type T a
f :: a -> Maybe (T a)
instance C [[b]] where
type T [[b]] = b
f xss = case concat xss of
[] -> Nothing
(x:_) -> Just x